LOAN COPY: RETURN TO AFWL TECHNICAL LIBRARY KIRTLAND AFB, N.M. 3228 ## NASA Contractor Report 3228 The Incorporation of Plotting Capability Into the "Unified Subsonic Supersonic Aerodynamic Analysis Program," Version B Octavio A. Winter CONTRACT NAS1-14900 **MAY 1980** ### NASA Contractor Report 3228 The Incorporation of Plotting Capability Into the "Unified Subsonic Supersonic Aerodynamic Analysis Program," Version B Octavio A. Winter Computer Sciences Corporation Hampton, Virginia Prepared for Langley Research Center under Contract NAS1-14900 Scientific and Technical Information Office 1980 | | - | • | | |--|---|---|---| | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | • | ### TABLE OF CONTENTS | | Page | |--|------| | Section 1 - INTRODUCTION | 1 | | Section 2 - PROGRAM DESCRIPTION | 3 | | Section 3 - DESCRIPTION OF PLOT OVERLAY PROGRAMS | 23 | | Section 4 - AUXILIARY FILES | 45 | | Section 5 - INPUT DESCRIPTION | 53 | | Section 6 - OUTPUT DATA | 74 | | Section 7 - REFERENCES | 77 | | | | | Appendix A - LABELED COMMON BLOCKS IN USSAERO | 78 | | Appendix B - SAMPLE INPUT AND OUTPUT DATA | 82 | | Appendix C - PLOTTING OUTPUT | 123 | #### LIST OF ILLUSTRATIONS | | | | Page | |--------|---|---|------| | Figure | 1 | USSAERO PROGRAM OVERLAY STRUCTURE | 2 | | Figure | 2 | CONFIGURATION INPUT AND SINGULARITY PANELING OVERLAYS | 5 | | Figure | 3 | OVERLAYS FOR THE COMPUTATION OF THE U, V, AND W VELOCITY COMPONENTS AND OF THE INFLUENCE COEFFICIENT MATRICES | 11 | | Figure | 4 | SOLUTION OVERLAY | 11 | | Figure | 5 | PLOTTING OUTPUT OVERLAYS | 19 | | Figure | 6 | AIRCRAFT COMPONENTS | 49 | | Figure | 7 | CAMBERED AND UNCAMBERED AIRFOILS | 50 | | Figure | 8 | UNCAMBERED FUSELAGE AIRCRAFT CONFIGURATION | 51 | | Figure | 9 | CAMBERED FUSELAGE AIRCRAFT CONFIGURATION | 52 | #### Section 1 #### INTRODUCTION The B01 version of the Unified Subsonic Supersonic Aerodynamic Analysis (USSAERO) program is the result of numerous modifications and additions made to the B00 version. These modifications and additions affect the program input, its computational options, the code readability, and the overlay structure. The most extensive modifications were made in November 1976, by Analytical Methods, Inc. These changes included a new procedure to calculate the strength of the source and vortex singularities in the non-planar boundary condition option for the wing. Also included in the November 1976 modifications were the added options to calculate the velocities and pressure coefficients at arbitrary field points, and to input normal velocities at body panel control points (inlet and exhaust nozzle modeling). This report describes the revised input; the plotting overlay programs, which were also modified, and their associated subroutines; the auxiliary files used by the program; the revised output data; and the program overlay structure. The locations of the different labeled common blocks used throughout the program, are listed in Appendix A. These might be helpful as a reference for a programmer. The user will notice that some of the figures in this report are not referenced in the text. They are purposely introduced in the report to help a user not familiar with the terminology. USSAERO PROGRAM OVERLAY STRUCTURE ## Section 2 PROGRAM DESCRIPTION The USSAERO computer program was converted to CDC FORTRAN EXTENDED VERSION 4, to be run under the NOS 1.3 operating system on CDC's CYBER-173 or CYBER-175. The program occupies 130,000 octal words to load and operates in the overlay mode. The purpose of the description which follows is to give the user a better view of the different functional areas of the program. To facilitate this reading, the user should refer to Figures 1 through 5. #### 2.1 Overlay (LWB, 0, 0) This overlay consists of program USSAERO and subroutine HDR. Program USSAERO controls the sequence of computations to determine the aerodynamic characteristics of a wing body-tail configuration. It calls subroutine HDR to print out the program acronym in large block letters followed by the installation name, the program name, operating system version number and compiler name, date of run, and time of run. It then reads the entire input data from disk file TAPE 5 and prints it out. One should notice that TAPE 5 which contains the input data is not equivalenced to file INPUT, therefore it can afterwards be re-wound and read by the different routines throughout the program. The initial printout of the input data is generated to help the user check out his own input for correctness. The following three primary overlay programs, GEOM, VELCMP, and SOLVE are then called to perform the remaining computations. The last primary overlay program CONPLT can be optionally called to plot the initial configuration geometry, the singularity paneling geometry and, finally, the pressure distributions. #### 2.2 Overlay (LWB, 1, 0) This overlay consists of program GEOM and subroutines PANEL, DERIV, SCAMP4, DERIV1, DERIV2, COMCU, and CUBIC2. Although these subroutines are loaded with this overlay, they are called by some of its secondary level overlays or by each other. The case identification and initial configuration parameters are read from the input file. The secondary overlay program CONFIG is then called to complete the input of the configuration description. The auxiliary case identification is then read, followed by the boundary condition and print option. Finally, the revised configuration parameters used for specifying the panel subdivisions are read. Depending on the values of the revised configuration parameters, the program calls the secondary overlay programs NEWORD, WNGPAN, NEWRAD, BODPAN, NUTORD, or TALPAN, which interpolate the input geometry and calculate the corner points, control points and inclination angles of the panels on the wing, body, or tail. #### 2.3 Overlay (LWB, 1, 1) This overlay consists of program CONFIG. As it was mentioned above, CONFIG completes the input of the initial configuration description. The configuration reference area is read from the input file if $J0 \neq 0$, otherwise the reference area is set equal to unity. The reference area is then written on TAPE 9. If $J1 \neq 0$, the wing geometry data is read from the input file in the order specified in reference 1. The program computes the upper and lower surface coordinates of the wing airfoils, and writes the entire wing geometry array as one record on TAPE 9. If $J2 \neq 0$, the body geometry data is also read from the input file in the order specified in reference 1 for each body segment. For arbitrary cross-sections, the y and z ordinates of the body segment are read in, but for circular cross-sections, the body cross-sectional area is read in and the corresponding radius calculated by the program. The entire body geometry array is then written as one record on TAPE 9. If $J3 \neq 0$, the pod geometry is read in, but no further use is made of this data. If $J4 \neq 0$, the fin geometry data is read in. The program computes the coordinates of the fin airfoils and writes the fin geometry array as one record on TAPE 9. Similarly, if $J5 \neq 0$, the Figure 2 CONFIGURATION INPUT AND SINGULARITY PANELING OVERLAYS the tail or canard geometry data is read in, the tail airfoil coordinates calculated, and the tail geometry array written on TAPE 9. If one or more of the above components is missing, the program writes a dummy record on TAPE 9 and continues. #### 2.4 Overlay (LWB, 1, 2) This overlay consists solely of program NEWORD. Program NEWORD revises the chordwise panel edge spacing on the wing and computes new airfoil ordinates by interpolation. The program first checks the input data to determine if the wing has a round leading edge. If so, an array of wing leading edge radii is read in. The program then checks if the percent chord locations of the panel edges are to be redefined. If so, an array of revised chordwise locations are read in, otherwise the edges are used as originally defined. The wing panel geometry is established by considering regions defined by sequential pairs of the originally defined airfoil sections. The leading and trailing edge slopes and dihedral angle of the region are calculated, and the origins and chord lengths of any intermediate panel edges obtained by linear interpolation in the spanwise direction. The individual panel geometry is then calculated. For the planar boundary condition option, the corner points and control points are calculated in the plane of the wing, while the wing camber and thickness slopes at the panel edges are obtained by a linear interpolation of the slopes determined in the program NEWORD. For the non-planar boundary condition, the corner points and control points are calculated on the upper and lower surfaces of the wing, and the panel inclination angles determined by subroutine PANEL. In addition, both options calculate the panel area, chord, span, and leading edge x coordinate. The same procedure is followed for each of the regions between the remaining airfoil sections. Prior to each step, the leading and trailing edge slopes and dihedral angles of the region are compared with those calculated for the previous region. If all these quantities are the same, the calculation proceeds normally. Otherwise, a new wing segment is defined, and the leading and trailing edge slopes, sine and cosine of the
dihedral angle, and a wing indicator parameter for the segment are stored in a special array before continuing the calculations. The program also computes the number of rows and columns of panels in each wing segment, the total number of panels, and the total number of segments on the wing. For each wing section, the original camber and thickness distributions are rewritten as one dimensional arrays. NEWORD calls DERIV to fit a chain of cubic curves having continuous first derivatives between each pair of points on these two curves, and the four coefficients of the cubic curve calculated within each interval. For wing sections having round leading edges with infinite leading edge slope, the slope at the second percent chord location is calculated by fitting the curve $z = \sqrt{2px} + ax + bx^2$ through the first three points. The program then calculates the coefficients of the cubic curves through the remaining points in the usual way, starting with the slope determined from the first derivative of the above formula. The revised camber and thickness ordinates and slopes are then calculated at the new chordwise locations by the formulas $$z = c_{1} + c_{2}x + c_{3}x^{2} + c_{4}x^{3}$$ $$dz/dx = c_2 + 2c_3x + 3c_4x^2$$ where the coefficients correspond to the interval of the curve under consideration. For wings having round leading edges, the formula given in the previous paragraph is used in the first interval. Each time DERIV is called, it calls subroutine SCAMP4 which in turn calls subroutines DERIV1, DERIV2, COMCU, and CUBIC2. ### 2.5 Overlay (LWB, 1, 3) This overlay consists only of program WNGPAN. Program WNGPAN revises the spanwise panel edge spacing for the wing and computes the panel geometry. The program first checks if the spanwise panel spacing is to be revised. If so, an array of revised panel edge locations is read in; otherwise, the panel edges are used as originally defined. #### 2.6 Overlay (LWB, 1, 4) This overlay consists of program NEWRAD which revises the circumferential panel edge spacing for the fuselage. For each body segment, there are three options for redefining the meridian lines. Considering the first segment, if KRADX(1) = 0, the meridian lines are not changed. If KRADX(1) is positive, the meridian lines are relocated at KRADX(1) equally spaced values of the meridian angle ϕ . If KRADX(1) is negative, an array of arbitrary meridian angles is read in. If the body has a circular cross section, the y and z coordinates are calculated at each axial station as follows: $y = r \cos \phi$ $z = z_C + r \sin \phi$ where the body radius r and camber z_{C} have been previously calculated in program CONFIG. If the body has an arbitrary cross section, the y and z coordinates are obtained by linear interpolation at the new values of the original y and z coordinates read in program CONFIG. The x, y, and z coordinates are written on TAPE 10, and the procedure repeated for the remaining body segments. #### 2.7 Overlay (LWB, 1, 5) This overlay consists of program BODPAN, which revises the axial panel edge spacing for the fuselage and computes the body panel geometry. For each body segment, the x, y, and z coordinates of the cross sections are read from TAPE 10. If the value of KFORX of the segment is positive, an array of new axial stations for the segment is read in; otherwise the original axial stations are retained. The body panel geometry is established by a linear interpolation along body meridian lines of the y and z coordinates at the new axial stations. The interpolation is started with the first ring of panels at the nose and continued until the last ring of panels on the last segment is reached. The corner point coordinates, the control point coordinates, the inclination angle, and area are calculated for each panel in sequence. The panel control point coordinates, the panel dihedral angle θ , the panel inclination angle δ , the corner point coordinates and the panel areas are stored in the COMMON block POINT, and the entire sequence of arrays written as a single record on TAPE 10 following the wing and tail panel geometry arrays. The remaining body geometry parameters are stored in COMMON blocks PARAM and BTHET. Finally, if the print option is negative, the corner point coordinates, control point coordinates, inclination angles, and areas are written on the output file. #### 2.8 Overlay (LWB, 1, 6) This overlay consists of program NUTORD which revises the chordwise panel spacing of fins, and/or canards, and computes the new airfoil ordinates. The program first tests to determine if the component under consideration is a fin (vertical tail) or a canard (horizontal tail). The program then initializes the appropriate constants, and reads in an array of leading edge radii if the component has a round leading edge. Each horizontal or vertical tail component is then treated as an additional wing segment, and the procedure follows the steps described under program NEWORD. #### 2.9 Overlay (LWB, 1, 7) This overlay consists of program TALPAN which revises the spanwise panel edge spacing for the fins and/or canards, and computes the panel geometry. The program first tests to determine if the component under consideration is a fin (vertical tail), or a canard (horizontal tail). The program initializes the appropriate constants, then rewinds TAPE 7, reads the wing geometry arrays from that file, and stores them in COMMON block POINT. Each horizontal or vertical tail component is then treated as an additional wing segment, following the steps described under subroutine WNGPAN. At the completion of the calculation, the combined wing and tail geometry arrays are stored in COMMON block POINT, and the entire sequence of arrays is written as a single record back on TAPE 7. The augmented CHORD and SLOPE arrays are also written on TAPE 7 at this point. The remaining wing and tail geometry parameters are stored in COMMON blocks PARAM and SEG. Finally, if the print option is positive, the fin, canard or tail panel corner point coordinates, control point coordinates, inclination angles, areas, and chords are written on the output file. #### 2.10 Overlay (LWB, 2, 0) This overlay consists of program VELCMP and subroutine TRAP. VELCMP computes the u, v, and w components of the velocity at panel control points and forms the aerodynamic influence coefficient matrices. VELCMP reads from TAPE 5, the Mach number, angle of attack, (NORVEL) a flag indicating if normal velocities at body control points are to be input, a local Mach number flag (not used), and the number of field points where the calculation of velocities is desired. If the Mach number is negative, or the same as the previous case, a return is executed. Otherwise, the program proceeds to compute the velocity components. For wing alone, or wing-body configurations, a preliminary calculation is made to determine if the wing control points require relocation, and to compute the number and size of the wing diagonal blocks for later use in the matrix calculations. For wing-body Calculation of velocity components induced at specified body panel control points Calculation of velocity components induced at specified control points by source and vortex distributions on panels located on the plane of the wing and tail surfaces Calculation of velocity components at panel control points, induced by source and vortex distributions on wing and tail surfaces Figure 3 Overlays for the computation of the u, v, and w velocity components and of the influence coefficient matrices. (LWB,3,0) SOLVE Solves for strengths of body sources and wing vortices that satisfy the boundary condition of tangential flow at panel control points, and determine the corresponding pressure distributions, forces and moments on the configuration Figure 4 SOLUTION OVERLAY configurations, the body geometry is first placed in temporary storage on TAPE 10. The program then proceeds to recalculate the chordwise locations of the wing control points for wings having supersonic edges, provided the planar boundary condition option has been selected. (An edge is defined to be supersonic if the component of the Mach number normal to the edge is greater than one.) Considering one wing segment at a time, the program tests to determine if either the leading or trailing edge is supersonic. Ιf all edges are subsonic, the control points retain their original locations at the panel centroids. If the leading edge is subsonic and the trailing edge is supersonic, the control points in a given column of panels are adjusted uniformly between the centroid of the leading edge panel and the trailing edge of the last panel in the column. If both edges are supersonic, the control points are relocated at the panel leading edges, and the trailing edge of the last panel in the column. A wing supersonic trailing edge indicator array is also computed at this point in the program. revised control points are stored in COMMON block POINT, and the entire wing geometry array written on TAPE 7. The body geometry temporarily stored on TAPE 10 is then rewritten on TAPE 7 following the wing geometry arrays. If NORVEL is greater than zero (see input description), VELCMP reads an array of normal velocities at body control points. The array of normal velocities is stored in labeled common (NORVEL). If FLDPTS is greater than zero (see input description), VELCMP reads arrays of x, y, and z coordinates of control points at specified field locations. It then proceeds to calculate the u, v, and w velocity components at those control points, which are influenced by source distributions on the body panels or by vortex distributions on the wing panels. #### 2.11 Overlay (LWB, 2, 1) This overlay consists of program BODVEL, and subroutines SUBPAN and SUPPAN. BODVEL computes the u, v, and w velocity components induced at specified control points, by body panels. The x, y, and z coordinates of the control point, and the
corresponding panel inclination angles θ and δ are read from COMMON block POINT. Starting with the first body segment, the body panel corner point coordinates and inclination angles are also read from COMMON block POINT for each row and column of panels. Considering a single body panel, the corner point and control point coordinates are transformed to a new coordinate system with origin at the first corner of the panel and inclined at an angle θ with respect to the horizontal. The velocity components induced by this inclined constant source panel at the given control point are computed in routine SUBPAN or SUPPAN depending if Mach is less than one or if it is greater or equal to one, respectively. Either of the two subroutines is called twice to obtain the influence of panels located on both right and left sides of the body. velocity components are bombined and transformed back to the reference coordinate system to obtain the final u, v, and w components of the velocity, and the velocity normal to the panel at the control This process is repeated for each panel on the body, following which the u, v, and w component arrays are written on TAPE 8, and the array of normal velocities on TAPE 9. If the control point is in the same ring of panels on the body as the influencing panel and the body has more than 60 panels, the normal velocity at the control point is written on TAPE 10, and its value set to zero in the array written on TAPE 9. This procedure sets up the diagonal blocks of the aerodynamic matrix for later use in the iterative solution procedure. If the print option is selected, the axial and normal arrays are written on the output tape. The process is repeated for each control point. #### 2.12 Overlay (LWB, 2, 2) This overlay consists of program LINVEL and subroutines SORVEL and VORVEL. Program LINVEL computes the u, v, and w velocity components induced at specified control points by source and vortex distributions lying on the mean plane of the wing and tail surfaces. The x, y, and z coordinates of the control point, and the corresponding panel inclination angles θ and δ are read from COMMON block POINT. Starting with the first wing segment, the panel leading and trailing edge slopes are calculated and stored. The program then computes the velocity components induced by the panel corner points along the <u>inboard</u> edge of the first column of panels. These calculations are performed by subroutines VORVEL and SORVEL, which return the three components of velocity induced by constant and linear varying vortex and source distributions. These subroutines are called twice to obtain the contributions of both left and right wing panels. In addition, a second call to subroutine VORVEL is required at panel trailing edge corner points if the panel spacing is not uniform. To compute the velocity components induced by the panel corner points along the <u>outboard</u> edge of this and the remaining columns of panels, the procedure is repeated. However, for the remaining columns of panels, advantage is taken of the fact that the velocity components along the inboard edges of a given column of panels are the same as those computed at the outboard edges of the previous column of panels. Therefore, the inboard velocity components are not recomputed, but stored in temporary arrays prior to the calculation of the outboard velocity component arrays. Once the velocity components induced by the panel corner points along the outboard edge of a given column of panels are computed, the inboard and outboard influences of each panel in the column are combined to obtain the resultant panel velocity components. First, the velocity components induced by the right and left wing panels are calculated, using appropriate combination rules for the source and vortex panels, and applying special rules for leading and trailing edge panels. Finally, the contributions of the left and right wing panels are combined, the velocity components transformed back to the reference coordinate system, and the velocity normal to the panel at the control point computed. The procedure is repeated for each column of panels in each wing segment, until all wing panels are accounted for. point the u, v, and w components of velocity induced by the source panels are written as a single record on TAPE 8, followed by the r, v, and w components of velocity induced by the vortex panels. If the thickness option is not requested, only the vortex panel arrays are written on this tape. The normal velocities are then written as a single record on TAPE 9. If the control point is in the same column of panels on the wing as the influencing panel, and the wing has more than 60 panels, the normal velocity at the control point is written on TAPE 10 and its value set to zero in the array written on TAPE 9. This procedure sets up the diagonal blocks of the aerodynamic matrix for later use in the iterative solution procedure. Finally, if the print option is selected, the axial and normal velocity component arrays induced by the vortex panels and source panels are written on the output tape. The process is repeated for each control point. Note: The word wing includes any tail, fin, or canard in the above description. #### 2.13 Overlay (LWB, 2, 3) This overlay consists of program WNGVEL and subroutines VORPAN and TRANS. Program WNGVEL computes the r, v, and w velocity components induced at specified control points by source and vortex distributions located on the wing and/or tail surfaces. The program first applies the Gothert rule compressibility transformation to the tangent of the panel inclination angles, and computes trigonometric functions of the revised angles. The three coordinates of the first control point, and the corresponding panel inclination angles θ and δ are read from COMMON block POINT. If the control point is on the body, the inclination angle θ is obtained from COMMON block BTHET. The program then computes the influence of each panel at the control point. The panels on the upper surface of each chordwise column are considered first, followed by those on the lower surface. This process is repeated for each column of panels on a wing segment, starting with the inboard panel, and continued until all wing and tail segments have been included. The coordinates of the four corner points of the influencing panel are obtained from COMMON block POINT in the reference coordinate system. They are indexed according to the panel row and column numbers. They are first used to calculate the leading and trailing edge slopes and the chord lengths of the inboard and outboard edges of the panel in a panel coordinate system lying in the plane of the panel and originating at the inboard leading edge corner. The control point is also transformed to the panel coordinate system, and the velocity components induced at the control point by each of the four corners computed by subroutine VORPAN. This subroutine is called twice for each corner point to obtain the contributions of both left and right wing panels. The contribution of a wake consisting of two concentrated edge vortices with a constant strength vortex sheet between them is calculated following the last panel in each column. The wake vortices are all oriented in a streamwise direction, and are assumed to lie in a plane parallel to the reference axis and containing the trailing edge of the last panel in the column. The velocity components at the control point induced by the upstream corners of the wake are obtained by four additional calls to VORPAN. The velocity components induced by the four corners of the panel and the wake are now combined to obtain the resultant velocities at the control point. The velocity components induced by the right and left wing panels are combined and the results transformed back to the reference coordinate system by subroutine TRANS. This subroutine calculates the u, v, and w velocity components and the normal velocity at the control point. A similar procedure is applied to calculate the transformed velocity components induced by the three components of the wake. The wake velocity components are then multiplied by the appropriate strength factors and added to obtain the final values of the velocity components at the control point. Special rules are applied to obtain the velocity components of the leading and trailing edge panels in each column. These rules are designed to provide a continuous vortex distribution around the nose of the airfoil, and to enforce the Kutta condition at the trailing edge. The procedure is repeated for each column of panels of each wing segment. When all panel influences have been computed, the u, v, and w components of velocity are written as a single record on TAPE 8, and the normal velocities written in one array on TAPE 9. If the control point is in the same column of panels on the wing as the influencing panel, and the wing has more than 60 panels, the normal velocity at the control point is written on TAPE 10, and its value set equal to zero in the array written on TAPE 9. This procedure sets up the diagonal blocks of the aerodynamic matrix for later use in the iterative solution procedure. Finally, if the print option is selected, the axial and normal velocity component arrays are written on the output file. This process is repeated for each control point. #### 2.14 Overlay (LWB, 3, 0) This overlay consists of program SOLVE, and subroutine INVERT, PARTIN, DIAGIN, ITRATE, PRESS, and FORMOM. Program SOLVE first calculates the array of normal velocities required to satisfy the boundary conditions at the wing and body panel control points. The panel inclination angles 0 and δ are obtained from the geometry arrays on TAPE 7, and the angle of attack α from common block PARAM. If the planar boundary condition and wing thickness options have been selected, the program next computes the normal
velocities induced on the body and non-coplanar wing or tail segments by wing source distribution. These normal velocities are subtracted from those previously calculated to obtain the resultant normal velocities at the control points. The coefficients of the equations to be solved have previously been stored in row order on TAPE 9. Three different procedures are followed to solve the equations depending on the order of the matrix of coefficients. If the configuration to be analyzed consists of an isolated wing or body, and the order of the matrix does not exceed 60, the equations are solved in subroutine PARTIN by direct inversion of the matrix. If the configuration consists of a wing-body combination, and the order of the wing and body partition does not exceed 60, subroutine PARTIN inverts the diagonal partitions of the matrix and writes the inverse matrices on TAPE 10. An iterative procedure described in subroutine ITRATE is then applied to solve the equations. For any configuration for which the order of the wing or body partition exceeds 60, the diagonal blocks of the matrix are read from TAPE 7, inverted, and written on TAPE 10 by subroutine DIAGIN. Subroutine ITRATE is then called to solve the resulting equations by an iterative procedure. Once the strengths of the source and vortex distribution have been determined, the program calculates the three components of velocity and pressure coefficient at each panel control point, starting with the body panels. The velocity components corresponding to unit strength source and vortex distribution are obtained from TAPE 8. The first three records on this file contain the velocity components at body control points induced by the body source panels, the wing source panels (if present), and the wing vortex panels. The program multiplies these by the corresponding source and vortex strength, and sums the products to obtain the resultant velocity component arrays at each body control point. The magnitude of the normal velocity at the body control points is also calculated at this point. If the absolute value of the print option is greater than one, the three components of velocity and the normals are written on the output file. The program then calls subroutine PRESS to obtain the pressure coefficients at the body Figure 5 PLOTTING OUTPUT OVERLAYS panels, and subroutine FORMOM to integrate the pressures and calculate the force and moment acting on the body. The velocity components at the wing and tail panel control points are computed next. The remaining three records containing the velocity components at wing and tail control points induced by the body source panels, the wing source panels (if present) and the wing vortex panels are read from TAPE 8. The program multiplies these by the corresponding source and vortex strengths and sums the products to obtain the resultant velocity component arrays at the wing and tail panel control points. If the absolute value of the print option is greater than one, the velocity component arrays are written on the output file. The program then calls subroutine PRESS to obtain the pressure coefficients, and subroutine FORMOM to calculate the force and moment acting on the wing. If the planar boundary condition option has been selected, two passes through this section are required to obtain the velocity components, pressure and forces on both upper and lower surfaces. The program writes the values of the stagnation pressure coefficient, the critical pressure coefficient, the vacuum pressure coefficient, and the elapsed time on the output file prior to returning. #### 2.15 Overlay (LWB, 4, 0) This overlay consists solely of program CONPLT. Program CONPLT selects the proper plot control program. It calls overlays (LWB, 4, 1) and (LWB, 4, 2) or (LWB, 4, 3) to generate the input geometry plots, and it calls overlays (LWB, 4, 4) and (LWB, 4, 2) or (LWB, 4, 3) to plot the singularity paneling geometry. It finally calls overlay (LWB, 4, 5) to generate the pressure distribution plots of the configuration. #### 2.16 Overlay (LWB, 4, 1) This overlay consists of program GPLTSV and subroutines SURCL and SURCC. Program GPLTSV reads the input geometry from TAPE 3, computes lines and normal unit vectors by either calling SURCL or SURCC, and stores them in arrays, and writes them as alternate records to TAPE 12. Subroutine SURCL computes outward normal vectors with four adjoining input points taken in a clockwise direction. Subroutine SURCC computes outward normal vectors with the four adjoining input points taken in a counter-clockwise direction. #### 2.17 Overlay (LWB, 4, 2) This overlay consists of program PLTORT and subroutines OTHPLT, PLOTIT, VISTST, PTROT, and VECROT, which it calls to generate orthographic and/or three-view plots. Subroutine OTHPLT is the control routine for the orthogonal projections. It calls subroutine PLOTIT. Subroutine PLOTIT reads lines of points and components of outward normal vectors defining a surface from TAPE 12, manipulates them in a specific manner, and plots them. This subroutine calls subroutines PTROT, VECROT, and VISTST to rotate and check visibility. Subroutine VECROT transforms outward normal vectors for desired paper plane. Subroutine VISTST tests a line of points for visibility. #### 2.18 Overlay (LWB, 4, 3) This overlay consists of program PLTSTE and subroutines SPPLT, STERPT, and PLTIT3. Subroutine SPPLT is the control routine for the perspective and/or stereo plots. It calls subroutines STERPT and PLTIT3 to generate the plots. Subroutine STERPT generates a perspective view of input data for a given three-dimensional array. Two passes through this routine will generate a pair of stereo frames. Subroutine PLTIT3 reads lines of points, and outward normal vectors defining a surface from a disk file and plots perspective views or stereo frames. #### 2.19 Overlay (LWB, 4, 4) This overlay consists of program SPLTSV and subroutines SURCL and SURCC. Program SPLTSV reads singularity paneling geometry from TAPE 3, computes the lines of points, and the outward normal vectors, stores them in arrays and writes them to TAPE 12, which will, later on, be read by overlay (LWB, 4, 2) and/or overlay (LWB, 4, 3). Subroutines SURCL and SURCC have been previously described in this section. #### 2.20 Overlay (LWB, 4, 5) This overlay consists of program PLPRES and subroutines PRSWNG, AXLES, PRESBO, and LABEL. Program PLPRES reads TAPE 12, which contains the pressure distribution information for the fuse-lage and/or for the wing, computes maximum and minimum values, scale factors and calls subroutines AXLES, PRESBO, PRESWNG, and LABEL. Subroutine AXLES (computes) plots axes and scales with their proper annotation. Subroutine PRESBO plots the fuselage pressure coefficients versus meridian angles for each ring of panels around it. Subroutine PRESWNG plots the wing pressure coefficients for the upper or lower surface versus the chordwise percent distances. Subroutine LABEL plots legends to the graphs of the fuselage pressure distribution or the wing pressure distribution. A more detailed description of the plotting overlay programs and their associated routines follows in Section 3. # Section 3 DESCRIPTION OF THE PLOT OVERLAY PROGRAMS ### 3.1 Program CONPLT (Overlay (LWB, 4, 0)) PURPOSE: This program selects the proper plot control program. INPUT: (1) Orthographic Projections | <u>Variable</u> | Value | Description | |-----------------|--------------|--| | HORZ | | "X", "Y", or "Z" for horizontal axis. | | VERT | | "X", "Y", or "Z" for vertical axis. | | TEST1 | | Word "OUT" for deletion of hidden lines; otherwise, leave blank. | | PHI | | Roll angle, degrees. | | THETA | | Pitch angle, degrees. | | PSI | | Yaw angle, degrees. | | PLOTSZ | | PLOTSZ determines the size of plot (scale factor is calculated using PLOTSZ and the maximum dimension of the configuration). | | TYPE | | Word "ORT" | | KODE | 0
1 | Continue reading plot cards. After processing this plot card, end reading plot cards. | | INPUT: | (2) Three | e-View Orthographic Plot | | Variable | <u>Value</u> | Description | | PHI | | Y-origin on paper of plan view, in. | | THETA | | Y-origin on paper of side view, in. | | PSI | | Y-origin on paper of front view, in. | | PLOTSZ | | PLOTSZ determines size of plot (scale factor is calculated using PLOTSZ and the maximum dimension of the configuration). | | <u>Variable</u> | Value | Description | |-----------------|--------|---| | TYPE | | Word "VU3" | | KODE | 0
1 | Continue reading plot cards. After processing this plot card, end reading plot cards. | | INPUT: | (3) | Perspective Views | | <u>Variable</u> | Valu | <u>Description</u> | | PHI | | X-coordinate of view point in data coordinate system. | | THETA | | Y-coordinate of view point in data Coordinate system. | | PSI | | Z-coordinate of view point in data coordinate system. | | XF | | X-coordinate of focal point in data coordinate system. | | YF | | Y-coordinate of focal point in data coordinate system. | | ZF | | Z-coordinate of focal point in data coordinate system. | | DIST | | Distance from eye to viewing - plane, in. | | FMAG | | Viewing - plane magnification factor; it controls size of projected image. | | PLOTSZ | | Diameter of viewing - plane. DIST and PLOTSZ determine a cone which is the field of vision. | | TYPE | | Word "PER" | | KODE | 0
1 | Continue reading plot cards. After processing this plot card, end reading plot cards. | | INPUT: | (4) | Stereo Frames | | PLOT | | Plot control flag | | KONPLT | | Integer used to select geometry plots or pressure distribution plots. | The plot card for the stereo frames is identical to that for the perspective views, except that the word "STE" is used in place of the word "PER". USAGE: CALL
OVERLAY (LWB, 4,0) COMMON BLOCKS: BLANK2, CONPLT, FILES, LWB, GRAPH, PTYPE #### 3.2 Program GPLTSV (Overlay (LWB, 4, 1)) PURPOSE: This program reads the configuration description from TAPE 3, computes maximum and minimum dimensions, and then proceeds to compute the outward normal unit vectors, and writes the lines of points and vectors on TAPE 12. #### INPUT: | J0 | Reference area parameter | |--------|--| | Jl | Wing definition parameter | | J2 | Fuselage definition parameter | | J3 | Pod definition parameter | | J4 | Fin definition parameter | | J5 | Canard or tail definition parameter | | J6 | Fuselage camber parameter | | NWAF | Number of wing airfoil sections | | NWAFOR | Number of ordinates used to define each wing airfoil section. | | WAFORG | Origin cordinates used to define each wing airfoil section (x, y, z, chord). | | WAFORD | Array of half-thickness ordinates in percent chord. | | XAF | Array of percent chords for wing airfoil ordinates. | | TZORD | Array of mean camber line ordinates. | NFUS Number of fuselage segments. NRADX Array containing integers which are the number of points used to define half-sections of the fuselage segments. NFORX Array containing integers which are the number of axial stations of the fuselage segments. XFUS Array containing the x-coordinates of the axial stations of a fuselage segment. ZFUS Array of fuselage camber ordinates SFUS Array of y and z ordinates used to define half-sections of an arbitrary fuselage segment. FUSARD Array of fuselage cross sectional areas. NP Number of pods. XPOD Array of x-coordinates of pod axial stations. NPODOR Number of axial stations on pod. PODORD Array of pod radii. NF Number of fins. NFINOR Number of ordinates used to define fin airfoil sections. FINORG Origin coordinates and chord of fin airfoil sections (x, y, z, chord). XFIN Array of percent chords for fin airfoil. FINORD Array of fin airfoil half-thickness ordinates in percent chord. NCAN Number of canards or tails. NCANOR Number of ordinates used to define canard airfoil (x, y, z, chord). CANORG Origin ordinates and chord length of canard airfoil (x, y, z, chord). XCAN Array of percent chords for canard airfoil sections. CANARD Array of canard airfoil half-thickness ordinates in percent chord. **OUTPUT:** ALRT Array of point chordinates defining lines. VECRT Array of numbers representing outward normal unit vectors. USAGE: CALL OVERLAY (LWB, 4, 1) COMMON BLOCKS: BLANK, BLANK2, FILES, ONE, SCRAT, PI ROUTINES CALLED : SURCC, SURCL NOTE: This program is called only once for each configuration, Arrays ALRT, VECRT are stored on TAPE 12. 3.2.1 Subroutine SURCL PURPOSE: This routine computes the outward normal unit vectors with four adjoining points taken in clockwise direction. INPUT: NPT Number of points. FLINE Array of line points **OUTPUT:** FVEC Array containing outward normal unit vector components. COMMON BLOCKS: None USAGE: CALL SURCL (NPT, FLINE, FVEC) ERROR RETURNS: None #### 3.2.2 Subroutine SURCC PURPOSE: This routine computes the outward normal unit vectors with four adjoining points taken in a counterclockwise direction. INPUT: NPT Number of points. FLINE Array of line points. OUTPUT: FVEC Array containing outward normal unit vector components. COMMON BLOCKS: None USAGE: CALL SURCC (NPT, FLINE, FVEC) ERROR RETURNS: None #### 3.3 Program PLTORT (Overlay (LWB, 4, 2)) PURPOSE: This routine is the control routine for the orthographic projection options. It notates the plot title, sets the origin for the plot, and after that it calls OTHPLT. INPUT: PHI Y-origin on paper of plan view, inches, (stacked three-view plots only). THETA Y-origin on paper of side view, inches, (stacked three-view plots only). PSI Y-origin on paper of front view, inches, (stacked three-view plots only). BIGD Maximum value of XMAX, YMAX, ZMAX dimensions. TYPE BCD variable indicating type of plot. PLOTSZ Variable which determines the size of the plot. Scale factor is calculated using PLOTSZ and maximum dimension of configuration. PLOT Plot control integer. OUTPUT: YORG Y-origin computed for placing view of plot. USAGE: CALL OVERLAY (LWB, 4, 2) COMMON BLOCKS: BLANK, BLANK2, NEWCOM, FILES, HEAD, GRAPH, PTYPE SUB- ROUTINES CALLED : CALPLT, NFRAME, NOTATE, OTHPLT #### 3.3.1 Subroutine OTHPLT PURPOSE: This routine adjusts minimum values of X, Y, and Z for the grid lines, sets up the axes, checks paper plane (centers plot within paper size if size of plot is greater than 28 inches), and establishes the offsets for the placement of the plot; then it calls subroutine PLOTIT for the plotting of the different components of the aircraft. INPUT: XMAX Maximum value of X (input Coord. Sys.). XMIN Minimum value of X (Input Coord, Sys.). YMAX Maximum value of Y (Input Coord. Sys.). YMIN Minimum value of Y (Input Coord. Sys.). ZMAX Maximum value of Z (Input Coord. Sys.). ZMIN Minimum value of Z (Input Coord. Sys.). HORZ "X", "Y", or "Z" for horizontal axis. VERT "X", "Y", or "Z" for vertical axis. PHI Same as defined in PLTCON. THETA Same as defined in PLTCON. PSI Same as defined in PLTCON. **OUTPUT:** NWAF Number of airfoil sections used to describe the wing. NW Number of ordinates used to describe each wing airfoil section. ITEST Control integer for checking paper plane. ITEST1 Test control integer for hidden lines, ITEST2 Control integer which equals 0 if PSI=THETA=PHI=0, otherwise it equals 1. IHORZ Control integer which determines whether X, Y, or Z is the horizontal variable. IVERT Control integer which determines whether X, Y, or Z is the vertical variable. HMIN Minimum value of the horizontal variable (X, Y, or Z). VMIN Minimum value of the vertical variable (X, Y, or Z). SCALE Scale factor. A Rotation matrix array. C Coefficients of vector transformation equation. NANG1 Number of points used to define a half-section of a fuselage segment, NUM2 Number of fin airfoil sections. NFOR Number of points used to define a fin airfoil section. NCOR Number of points used to define a canard airfoil section. USAGE: CALL OTHPLT COMMON BLOCKS: NEWCOM, GRAPH, BLANK, BLANK2, PTYPE, ONE, PI SUB- ROUTINES CALLED : PLOTIT #### 3.3.2 Subroutine PLOTIT PURPOSE: This routine generates instructions which drive the equipment to produce plots. It reads lines of points and outward normal unit vectors from itermediate storage (TAPE 12) and manipulates them as necessary. INPUT: NLNumber of lines. NPT Number of points. ITEST Control integer for checking paper plane. Control integer for testing of hidden lines. ITEST1 ITEST2 Control integer which equals 0 when PSI=THETA=PHI=0, otherwise equals 1. IHORZ Control integer which determines whether X, Y, or Z is the horizontal variable. IVERT Control integer which determines whether X, Y, or Z is the vertical variable. HMIN Minimum value of the horizontal variable. VMIN Minimum value of the vertical variable. SCALE Scale factor. Rotation matrix array. Α C Array containing coefficients of transformation equation. OUTPUT: Orthographic plots. USAGE: CALL PLOTIT COMMON BLOCKS: FILES SUB- ROUTINES CALLED : PTROT, VERCROT, VISTST #### 3.3.3 Subroutine PTROT PURPOSE: This routine rotates and projects a set of 3-D points. INPUT: NPT Number of points. A Rotation matrix array. ALINE Array containing rotated line. OUTPUT: RLINE Array containing rotated line. USAGE: CALL PTROT COMMON BLOCKS: None SUB- ROUTINES CALLED : None #### 3.3.4 Subroutine VECROT PURPOSE: This routine does the vector transformation. INPUT: NVEC Number of vectors. C Array containing transformation coefficients. FVEC Input vectors. OUTPUT: RVEC Transformed vectors. USAGE: CALL VECROT COMMON BLOCKS: None SUB- ROUTINES CALLED : None #### 3.3.5 Subroutine VISTST PURPOSE: This routine tests a line of points for visibility. INPUT: KODE Control integer which tells us whether we have the first line, last line or any other. NPT Number of points. RLINE Array containing line of points to be tested for visibility. RVEC Array of transformed vectors. **OUTPUT:** PLINE Array containing visible points. ICOUNT Counter containing number of visible points. NNUM Array containing counter ICOUNT for each set of points which are visible. USAGE: CALL VISTST COMMON BLOCKS: None SUB- ROUTINES CALLED : None ### 3.4 Program PLTSTE (Overlay (LWB, 4, 3)) PURPOSE: This routine is the control routine for the perspective and stereo plots. INPUT: ISP Control integer specifying the type to be stereo or perspective: ISP=1 perspective ISP=2 stereo USAGE: CALL OVERLAY (LWB, 4, 3) COMMON BLOCKS: GRAPH, BLANK, BLANK2, FILES, HEAD, PTYPE SUB- ROUTINES CALLED : SPPLT #### 3.4.1 Subroutine SPPLT PURPOSE: This routine calls subroutine STERPT to generate the perspective views or stereo views of an aircraft. INPUT: PLOT Plot control integer: 0 - No plot output. - 1 Plot output of singularity paneling on the Calcomp plotter. - 2 Plot output of singularity paneling on the Varian or Versatec plotter. A negative value of PLOT Will generate the input configuration plots. PHI X - of view point (location of viewer) in data coordinate system. THETA Y - of view point in data coordinate system. PSI Z - of view point in data coordinate system. XF X - of focal point (determines direction and focus) in data coordinate system. YF Y - of focal point in data coordinate system. ZF Z - of focal point in data coordinate system. DIST Distance from eye to viewing plane, inches. FMAG Viewing plane magnification factor FMAG controls the size of the projected image. PLOTSZ Diameter of viewing plane, (inches). DIST and PLOTSZ together, determine a cone which is the field of vision. ISP Control integer indicating whether more than one set of arrays will be plotted in the same frame set from the same view point. Jl Wing definition parameter. J2 Fuselage definition parameter. J3 Pod definition parameter. J4 Fin definition parameter. J5 Canard definition parameter. NWAF Number of wing airfoil sections. NWAFOR Number of ordinates used
to describe a wing airfoil section. NFUS Number of fuselage segments. NRADX Number of points used to represent a half-section of a fuselage segment. NFORX Number of sections in a fuselage segment. NP Number of pods, NPODOR Number of stations at which pod radii are to be specified. NF Number of fins. NFINOR Number of ordinates used to define each fin airfoil section. NCAN Number of canards. NCANOR Number of ordinates used to define each canard airfoil section. Kl through K5: Same as Jl through J5. Used for singularity paneling plots. KWAF Same as NWAF, but used for singularity paneling only. KWAFOR Same as NWAFOR. Singularity paneling. KRADX Same as NRADX. Singularity paneling. KFORX Same as NFORX. Singularity paneling. KF Number of airfoil sections used to define inboard and outboard edges of singularity panels of a fin. KFINOR Same as NFINOR. Singularity paneling. KAN Number of airfoil sections used to define inboard and outboard edges of singularity panels of a canard. KANOR Number of ordinates specifying leading and trailing edges of singularity panels of a canard. COMMON BLOCKS: NEWCOM, BLANK, BLANK2, FILES, GRAPH, ONE SUB- ROUTINES CALLED : PLTIT3 #### 3.4.2 Subroutine PLTIT3 PURPOSE: This routine reads from TAPE 12 lines of points which define a surface, and plots perspective or stereo views. INPUT: ALINE Array containing lines of points. NL Number of lines. NPT Number of points. PHI X - of viewing point in data coordinate system. THETA Y - of viewing point in data coordinate system. PSI Z - of viewing point in data coordinate system. XF X of focal point in data coordinate system. YF Y of focal point in data coordinate system. ZF Z of focal point in data coordinate system. PLOTSZ Diameter of viewing plane, inches. DIST Distance from eye to viewing plane. FMAG Magnification factor of viewing plane. NCI Integer value indicating that more than one set of arrays will be plotted in the same frame set from the same viewing point. OUTPUT: Perspective or stereo frames. COMMON BLOCKS: FILES SUB- ROUTINES CALLED : STERPT #### 3.4.3 Subroutine STERPT PURPOSE: This routine plots the stereo frames, or the perspective view. Stereo plots are generated in two passes. INPUT: X, Y, Arrays of X, Y, and Z values to be transformed and AND Z: plotted. N Number of points to be plotted. K Interleave factor of a mixed array (normally 1). NC Integer value indicating whether more than one set of arrays will be plotted in the same frame set from the same view point: 0 - First set of arrays. l to N successive sets of arrays. -1 - Plot the left frame for an array. -2 - Plot the right frame for an array. IP 3 - Pen up when moving to first point in the array. PAG Diameter in floating point inches of the viewing plane. Determined by DIST and PLOTSZ. PLA Distance from eye to viewing plane specified in floating point inches. XPR Viewing plane magnification factor. OUTPUT: Perspective or stereo plots. COMMON BLOCKS: PI SUB- ROUTINE CALLED: None #### 3.5 Program SPLTSV PURPOSE: This program reads the singularity paneling data from TAPE 3, computes maximum and minimum dimensions. It then proceeds to compute outward normal unit vectors. generates lines, and stores lines of points and vectors on TAPE 12. #### INPUT: KO Reference area parameter. Kl Wing definition parameter. K2 Fuselage definition parameter. K3 Pod definition parameter. K4 Fin definition. K5 Canard definition parameter. K6 Fuselage camber parameter. KWF Number of wing airfoil sections. KWAFOR Number of ordinates used to define each wing airfoil section. NFUS Number of fuselage segments. KRADX Number of fuselage axial stations in one segment. NF Number of fins. KWF Number of airfoil sections. NCANR Number of ordinates used to define a canard airfoil section. XC Array containing X-coordinates of panel corner points. YC Array containing Y-coordinates of panel corner points. ZC Array containing Z-coordinates of panel corner points. **OUTPUT:** ALRT Array containing lines of points. VECRT Array containing outward normal unit vectors. COMMON BLOCKS: NEWCOM, FILES, BLANK, BLANK2 SUB- ROUTINES CALLED : SURCL, SURCC #### 3.6 Program PLPRES (Overlay (LWB, 4, 5)) PURPOSE: This is the control routine for the plotting of the pressure distributions on the fuselage and on the wing. #### INPUT: NP Number of panels of component. COMPT Component identification integer: 1 - Fuselage. 2 - Wing and/or tail. #### NPASS Pass number: - 1 Fuselage pressure distribution and wing pressure distributions for upper and lower surfaces if non-planar boundary condition option is selected. Wing pressure distribution for the upper surface if planar boundary condition option is selected. - 2 Wing pressure distribution for the lower surface if the planar boundary condition option is selected. - X Fuselage panel control points X-coordinate. - Y Fuselage panel control points Y-coordinate. - Z Fuselage panel control points Z-coordinate. - CP Array of pressure coefficients. - XQ Array of wing panel X-coordinates. - NFUS Number of fuselage segments. Plot control integer: PLOT 0 - No plot output. 1 - Plot output on Calcomp plotter. 2 - Plot output on Varian plotter. NRADX(I) Number of points used to represent a half-section in fuselage segment (I = 1,NFUS). Number of sections (stations) in fuselage segment NFORX(I) (I = 1, NFUS). NSEG Number of wing segments. NROW Array containing numbers of rows of panels in each wing segment. NCOL Array containing numbers of columns of panels in each wing segment. OUTPUT: PHI Array containing meridian angles (in degrees) fuselage panel control points. XX Array of fuselage panel control point X-coordinates. ΥY Array of wing panel control point Y-coordinates. CP Array of pressure coefficients. NR Number of fuselage panels at a specified station. Array of wing panel X-coordinates. XQ NPW Number is wing panels at a specified column. CALL OVERLAY (LWB, 4, 3) USAGE: COMMON BLOCKS: SCALE, PARAM, GRAPH, PRESS, SEG, FILES, NEWCOM, PI, CLINE SUB- ROUTINES : PRESBO, AXLES, PRSWNG, LABEL CALLED #### 3.6.1 Subroutine PRESBO This routine plots the pressure distribution at PURPOSE: specified sections (stations) of the fuselage. curves are plotted in groups of ten or less. Each curve represents the pressure distribution at a station. INPUT: Х Fuselage pagel control point X-coordinate. Number of points to be plotted per curve. KF Array containing the meridian angles (in degrees) PHI of panel control points. CP Array containing pressure coefficients. CPMIN Minimum value in CP-array. Scale factor. **CSCALE** KK Control integer which specifies symbol to be used in the plotting of each curve. Values of KK from 1 to 10. **OUTPUT:** Fuselage pressure distribution plots. USAGE: CALL PRESBO(X, KF, PHI, CP) COMMON BLOCKS: SCALE #### Subroutine AXLES 3.6.2 PURPOSE: This routine computes the axes for the pressure distribution plots. INPUT: COMPT Component identification integer. Scale factor for CP-arrays. CSCALE CPMIN Origin of CP scale. PLOT Plot control integer. OUTPUT: Axes with or without grid. USAGE: CALL AXLES (COMPT) #### 3.6.3 Subroutine PRSWNG PURPOSE: This subroutine plots the wing pressure distribution for each column of panels each time it is called. INPUT: NR Number of panels. CSCALE Scale factor of CP's in column. CPMIN Origin of CP-axes. XQ Non-dimensional panel X-coordinate. CP Array of pressure coefficients. OUTPUT: Pressure distributions plots for each column on wing. USAGE: CALL PRESWNG(NR,L,XQ,CP) COMMON BLOCKS: SCALE, GRAPH #### 3.6.4 Subroutine LABEL PURPOSE: This subroutine plots the legends to the graphs of the fuselage pressure distribution or of the wing pressure distribution. INPUT: PLOT Plot control integer. COMPT Component identification integer. LL Total number of curves plotted. XX Array of X or Y-coordinates of the different sections for which pressure distribution was plotted. KL Total number of curves to be plotted. L Integer counter of number of curves per frame, L<10. OUTPUT: Plots of the legends to the graphs of the pressure distribution frames. USAGE: CALL LABEL(LL,XX,KL,L,COMPT) COMMON BLOCKS: SCALE, GRAPH, FILES, PARAM # Section 4 AUXILIARY FILES USSAERO designates TAPE 6 as its output file and which contains its printed tables. Disk file TAPE 5 contains the input data to the program. The contents of TAPE 5 are initially read in, each record in 8Al0 format printed out under the same format, and then, the file is re-wound before being used throughout the program. The initial printout of the contents of TAPE 5 gives the user the opportunity to check his input data. In addition to TAPE 5 and TAPE 6, USSAERO specifies nine auxiliary files which are utilized as temporary storage and data transfer. These files are designated: TAPE 3, TAPE 7, TAPE 8, TAPE 9, TAPE 10, TAPE 11, TAPE 12, TAPE 13, and TAPE 14. TAPE 3 is used as temporary storage of the input geometry data which is followed by the singularity paneling geometry data. The input geometry data is written to TAPE 3 by program CONFIG (Overlay (LWB, 1, 1)). The singularity paneling geometry data is written to TAPE 3 by programs WNGPAN (Overlay (LWB, 1, 3)). BODPAN (Overlay (LWB, 1, 5)), and TALPAN (Overlay (LWB, 1, 7)). TAPE 7 is primarily used for the storage of the panel geometry data. The first logical record is written to this file by program WNGPAN, and it contains wing panel geometry data. If the configuration has additionally, fins and/or canards, the first logical record will be re-written to TAPE 7 by program TALPAN, and its contents will be wing, fin, and/or canard panel geometry data. The second logical record is written to TAPE 7 by program BODPAN, and its contents are the body (fuselage) panel geometry data. Additional records are written to TAPE 7 by program VELCMP (Overlay (LWB, 2, 0)), if the aerodynamic matrix partitions matrices are further subdivided into blocks. The diagonal block matrices are stored in individual logical records on this file after the panel geometry data. A maximum of 50 additional
records containing the elements of the diagonal block matrices may be written to this file. TAPE 8 is used to store the velocity component arrays u, v, and w. Each record in this file contains one row of the velocity components from a given matirx partition. In the first partition, NBODY logical records are written to TAPE 8 by program BODVEL (Overlay (LWB, 2, 1)). In the second partition, another NBODY logical records are written to TAPE 8 by program LINVEL (Overlay (LWB, 2, 2)) or program WNGVEL (Overlay (LWB, 2, 3)). However, if the planar boundary condition with thickness option is selected, program LINVEL writes an additional NBODY records to this file. In the third partition, NWING records are written to TAPE 8 by program BODVEL. In the fourth partition, another NWING records are written to this file, by either program LINVEL (Overlay (LWB, 2, 2)) or by program WNGVEL (Overlay (LWB, 2, 3)). If the planar boundary condition with thickness option is selected, program LINVEL writes an additional NWING records to TAPE 8. TAPE 9 is first used in program CONFIG to store the input configuration geometry data. Five logical records are written to TAPE 9, and they contain: reference area, wing geometry data, body (fuselage) geometry data. Dummy records are written to TAPE 9 for missing components. TAPE 9 is re-initiated in program VELCMP, and used to store normal velocity arrays. Each logical record contains one row of normal velocities from a given matrix partition. In the first partition, NBODY records are written to this file by program WNGVEL. In the third partition, NWING records are written to TAPE 9 by program BODVEL, and in the fourth partition, an additional NWING records are written to this file by program LINVEL or by program WNGVEL. Thus, a total of two (NBODY + NWING) records are written to TAPE 9. TAPE 10 is first used in program NEWRAD as temporary storage for the body panel corner point coordinates. It is reinitialized by program VELCMP, and then used to store the elements of the diagonal block matrices, if the matrix partitions are further subdivided into blocks. Each record contains one row of normal velocities from a given diagonal block matrix in a given matrix partition. The records are written at the same time the normal velocity arrays for the remainder of the row are written on TAPE 9. Thus, a total of two (NBODY + NWING) records are also written on TAPE 10. These records are subsequently read by program VELCMP, transferred to TAPE 7, and the file re-initialized a second time. TAPE 10 is finally used to store the elements of the inverse diagonal block matrices, or the inverse diagonal partition matrices, if the matrix is not subdivided into blocks. In the former case, the elements of each inverse diagonal block matrix are written as a single record on TAPE 10 by subroutine DIAGIN, or in the latter case, the elements of each inverse diagonal partition matrix are written on this file by subroutine PARTIN. TAPE 11 is first used by program GEOM as temporary storage for the input geometry control integers and for the revised configuration paneling description control integers. The first record is read by program CONPLT (Overlay (LWB, 4, 0)) and program GPLTSV (Overlay (LWB, 4, 1)). The second is read in by program SPLTSV (Overlay (LWB, 4, 4)). TAPE 12 is first used by program GPLTSV which writes arrays of lines alternately with arrays of outward normal vectors to it, for the plotting of the input geometry. The file is then re-initialized by program SPTSV which writes arrays of lines alternately with arrays of outward normal vectors to it, for the plotting of the singularity paneling. The file is re-initialized for the last time in subroutine FORMOM which writes fuselage and wing (upper surface only) pressure distribution. The number of records written to this file is a function of the input geometry and of the singularity paneling. TAPE 13 is first used by program GEOM which writes the plot control cards to it. The file is re-initialized by subroutine FORMOM which writes the wing (lower surface only) pressure distribution to it. TAPE 14 is first used as a temporary storage for the normal velocity arrays in subroutine ITRATE, if NBODY and NWING are not equal to zero. The NBODY records in TAPE 9 which correspond to the second partition and the NWING records in the same file corresponding to the fourth partition, are copied to TAPE 14. This file is re-initialized in plot overlay programs PLTORT and/or PLTSTE where it is used as temporary storage for alpha-numeric information to be notated on the geometry plots. Figure 6 AIRCRAFT COMPONENTS Figure 7 CAMBERED AND UNCAMBERED AIRFOILS Figure 8 UNCAMBERED FUSELAGE AIRCRAFT CONFIGURATION Figure 9 CAMBERED FUSELAGE AIRCRAFT CONFIGURATION # Section 5 INPUT DESCRIPTION The input to the USSAERO program consists of two parts, namely, the numerical description of the initial configuration geometry followed by the plot information cards; and the auxiliary input data which specifies the singularity paneling scheme, program options, Mach number, angle of attack, normal velocities, and field points, again, followed by plot information cards. The project input is illustrated in Appendix B. #### Input Geometry | Columns | Variable | Value | Description | |---------|----------|-------|---| | 1-80 | TITLE1 | | This card contains any desired identifying information. | #### Control Integers | Columns | Variable | <u>Value</u> | Description | |---------|----------|--------------|--| | 1-3 | J0 | 0
1 | No reference area.
Reference area to be read. | | 4-6 | Jl | 0
1
-1 | No wing data.
Cambered wing data to be read.
Uncambered wing data to be read. | | 7-9 | Ј2 | 0
1
-1 | No fuselage data. Data for arbitrarily shaped fuselage to be read. Data for circular fuselage to be read. (With J6=0, fuselage will be cambered. With J6=-1, fuselage will be symmetrical with respect to the xy-plane. With J6=1, entire configuration will be symmetrical with respect to the xy-plane.) | | 10-12 | J3 | 0
1 | No POD (Nacelle) data.
POD (Nacelle) data to be read. | | Columns | Variable | Value | Description | |---------|-----------|---------|---| | 13-15 | Ј4 | Ω
1 | No fin (vertical tail) data.
Fin data to be read. | | 16-18 | J5 | 0
1 | No canard (horizontal tail data).
Canard data to be read. | | 19-21 | J6 | 0
1. | A cambered circular or arbitrary fuselage if J2 is non-zero. Complete configuration is symmetrical with respect to the xy-plane, which implies an uncambered circular fuselage, if there is one. Uncambered circular fuselage with J2 non-zero. | | 22-24 | NWAF | 2-20 | Number of airfoil sections used to describe the wing. | | 25-27 | NWAFOR | 3-30 | Number of ordinates used to define each wing airfoil section. If the value of NWAFOR is input with a negative sign, the program will expect to read lower surface ordinates also. | | 28-30 | NFUS | 1-4 | Number of fuselage segments. | | 31-33 | NRADX (1) | 3-20 | Number of points used to represent half-section of first fuselage segment. If fuselage is circular, the program computes the indicated number of Y-and Z-coordinates. | | 34-36 | NFORX(1) | 2-30 | Number of stations for first fuselage segment. | | 37-39 | NRADX(2) | 3-20 | Same as NRADX(1), but for the second fuselage segment. | | 40-42 | NFORX(2) | 2-30 | Same as NFORX(1), but for the second fuselage segment. | | 43-45 | NRADX (3) | 3-20 | Same as NRADX(1), but for the third fuselage segment. | | 46-48 | NFORX(3) | 2-30 | Same as NFORX(1), but for the third fuselage segment. | | Columns | <u>Variable</u> | Values | Description | |---------|-----------------|---------|---| | 49-51 | NRADX(4) | 3-20 | Same as NRADX(1), but for the fourth fuselage segment. | | 52-54 | NFORX (4) | 2-30 | Same as NFORX(1), but for the fourth fuselage segment. | | 55-57 | NP | 0-9 | Number of PODS (Nacelles). | | 58-60 | NPODOR | 4-30 | Number of stations at which pod radii are to be specified. | | 61-63 | NF | 0-6 | Number of fins (vertical tails) to be described. | | 64-66 | NFINOR | 3-10 | Number of ordinates used to describe each fin airfoil section. | | 67-69 | NCAN | 0-6 | Number of canards (horizontal tails) to be described. | | 70-72 | NCANOR | 3-10 | Number of ordinates used to define each canard airfoil section. If the value of CANOR is negative, the program will expect to read lower surface ordinates also; otherwise, the airfoil is assumed to be symmetrical. | | 73-75 | PLOT | -1
0 | Plot flag. Plots of input geometry + singularity paneling geometry + pressure distributions. In this case, plot cards should be placed before TITLE2 card and before the MACH NO., ALPHA cards. No plots will be generated. | | | | +1 | Plots of singularity paneling geometry and pressure distributions will be generated. Plot cards should be placed before the MACH NO., ALPHA cards. | ## Reference Area | Columns | Variable | Value | Description | |---------------------|-----------------|-------
--| | 1-7 | REFA | | Reference Area Card. | | | | | Wing | | Columns | <u>Variable</u> | Value | Description | | 1-7 | XAF | | Cards, each containing up to 10 values of percent chord, at which ordinates of airfoils are to be specified. Total of NWAFOR values. Each card may be identified in columns 73-80 by XAFJ, where J denotes the last location specified on that card. | | 1-7 | WAFORG | | NWAF cards, each containing values of: X-coordinate of wing airfoil leading | | 8-14 | | | edge,
Y-coordinate of wing airfoil leading
edge. | | 15-21 | | | Z-coordinate of wing airfoil leading edge, | | 22-28 | | | wing airfoil streamwise chord length. Each card may be identified in columns 73-80 by WAFORGJ, where J denotes the airfoil number, starting from the most inboard airfoil. | | 1-7
8-14
etc. | TZORD | | NWAF cards, each containing up to 10 values of DELTAZ (mean camber line). A total of NWAFOR values will be read per airfoil. Each card may be identified in columns 73-80 by TZORJ, where J denotes the last location on that card. These values will be input only if Jl<0. | | 1-7
8-14
etc. | WAFORD | | Cards, each containing up to 10 values of wing half-thickness, (each specified as percent of the chord) specified for each wing airfoil. If NWAFOR<0, the same number of values will be read for the wing lower surface. | ## Body (Fuselage) | Columns | <u>Variable</u> | <u>Value</u> | Description | |---------------------|-----------------|--------------|---| | 1-7
8-14
etc. | XFUS | | Cards, each containing up to 10 values of X-coordinates of body axial stations specified for each body segment. Total number of values per segment is specified by NFORX. Each card may be identified in columns 73-80 by XFUSJ, where J denotes the last location on that card. | | 1-7
8-14
etc. | ZFUS | | Cards, each containing up to 10 values of Z-ordinates of fuselage camber line, specified at each fuselage segment. Total number of values per segment is specified by NFORX. Each card may be identified in columns 73-80 by ZFUSJ, where J denotes the last location on that card. | | 1-7
8-14
etc. | SFUS | | Cards, each containing up to 10 values of Y-ordinates of half-cross-section points. A total of NRADX values are input. The cards containing NRADX values of Y-coordinates are followed by cards containing the Z-coordinates of the same points. These sets of cards are repeated for each fuselage segment. They will only be read, if Jl = 1. (Fuselage of arbitrary shape). | | 1-7
8-14
etc. | FUSARD | | Cards, each containing up to 10 values of fuselage cross-sectional areas. Total of NFORX values will be read per fuselage segment. Each card may be identified in columns 73-80 by FUSARDJ, where J denotes last station specified on that card. Fuselage has circular cross-sections. | ## Fin | Columns | <u>Variable</u> | Value | Description | |---------------------|-----------------|-------|--| | 1-7 | FINORG | | X-ordinate on inboard airfoil leading edge, | | 8-14 | | | Y-ordinate on inboard airfoil leading edge, | | 15-21 | | | Z-ordinate on inboard airfoil leading | | 22-28
29-35 | | | <pre>edge, Chord length of inboard airfoil, X-ordinate on outboard airfoil leading edge,</pre> | | 36-42 | | | Y-ordinate of outboard airfoil leading edge, | | 43-49 | | | Z-ordinate of outboard airfoil leading edge, | | 50-56 | | | Chord length of outboard airfoil. This card may be identified in columns 73-80 by FINORGJ, where J denotes the fin number. | | 1-7
8-14
etc. | XFIN | | Cards, each containing up to 10 values of fin airfoil percent chord. Each card can be identified in columns 73-80 by XFINJ, where J denotes the fin number. | | 1-7 | FINORD | | Cards, each containing up to 10 values of fin airfoil half-thickness, expressed in percent chord. Since the fin airfoil must be summetrical, only the ordinates on the positive Y-side of the fin chord plane are required. each card may be identified in columns 73-80 by FINORDJ, where J denotes the fin number. | NOTE: FINORG, XFIN and FINORD are input for each fin. ## Canard | Columns | <u>Variable</u> | Value | |] | Descript | ion | | |---------|-----------------|-------|------------------|----|----------|---------|---------| | | CANORG | | | _ | | | | | 1-7 | | | X-ordinate edge, | of | inboard | airtoil | leading | | 8-14 | | | Y-ordinate edge. | of | inboard | airfoil | leading | | Columns | <u>Variable</u> | <u>Value</u> | Description | |----------------------------------|-----------------|--------------|---| | 15-21 | | | Z-ordinate of inboard airfoil leading edge, | | 22 - 28
29 - 35 | | | Chord length of inboard airfoil. X-ordinate of outboard airfoil leading edge. | | 36-42 | | | Y-ordinate of outboard airfoil leading edge, | | 43-49 | | | Z-ordinate of outboard airfoil leading edge, | | 50-56 | | | Chord length of outboard airfoil. This card may be identified in columns 73-80 by CANORGJ, where J denotes canard number. | | 1-7
8-14
etc. | XCAN | | Cards, each containing up to 10 values of canard airfoil percent chord. Each card may be identified in columns 73-80 by XCANJ, where J denotes canard number. Total number of values is NCANOR/airfoil. | | 1-7
8-14
etc. | CANORD | | Cards, each containing up to 10 values of canard airfoil half-thickness, expressed in percent chord. If canard airfoil is not symmetrical, the lower ordinates are presented on a second CANORD set of cards. The program expects both upper and lower ordinates to be punched as positive values in percent chord. | NOTE: CANORG, XCAN, and CANORD are input for each canard. ## Plot Cards ## For ### (1) Orthographic Projections | Columns | <u>Variable</u> | <u>Value</u> | Description | |---------|-----------------|--------------|--| | 1 | HORZ | | "X", "Y", or "Z" for horizontal axis. | | 3 | VERT | | "X", "Y", or "Z" for vertical axis. | | 5-7 | TEST1 | | Word "OUT" for deletion of hidden lines; otherwise, leave blank. | | Columns | <u>Variable</u> | <u>Value</u> | Description | |---------|-----------------|--------------|--| | 8-12 | PHI | | Roll angle, degrees. | | 13-17 | THETA | | Pitch angle, degrees. | | 18-22 | PSI | | Yaw angle, degrees. | | 48-52 | PLOTSZ | | PLOTSZ determines the size of plot (scale factor is calculated using PLOTSZ and the maximum dimension of configuration). | | 53-55 | TYPE | | Word "ORT" | | 72 | KODE | 0
1 | Continue reading plot cards. After processing this plot card, end reading plot cards. | ## (2) Three-View Orthographic Plot | Columns | <u>Variable</u> | Value | Description | |---------|-----------------|--------|--| | 8-12 | PHI | | Y-origin on paper of plan view, in. | | 13-17 | THETA | | Y-origin on paper of side view, in. | | 18-22 | PSI | | Y-origin on paper of front view, in. | | 48-52 | PLOTSZ | | PLOTSZ determines size of plot (A scale factor is calculated using PLOTSZ and the maximum dimension of the configuration). | | 53-55 | TYPE | | Word "VU3". | | 72 | KODE | 0
1 | Continue reading plot cards. After processing this plot card, end reading plot cards. | ## (3) Perspective Views | Columns | <u>Variable</u> | <u>Value</u> | Description | |---------|-----------------|--------------|---| | 8-12 | PHI | | X-coordinate of view point in data coordinate system. | | 13-17 | THETA | | Y-coordinate of view point in data coordinate system. | | Columns | <u>Variable</u> | Value | Description | |---------|-----------------|--------|---| | 18-22 | PSI | | Z-coordinate of view point in data coordinate system. | | 23-27 | XF | | X-coordinate of focal point in data coordinate system. | | 28-32 | YF | | Y-coordinate of focal point in data coordinate system. | | 33-37 | ZF | | Z-coordinate of focal point in data coordinate system. | | 38-42 | DIST | | Distance from eye to viewing - plane, in. | | 43-47 | FMAG | | Viewing - plane magnification factor; it controls size of projected image. | | 48-52 | PLOTSZ | | Diameter of viewing - plane. DIST and PLOTSZ determine a cone which is the field of vision. | | 53-55 | TYPE | | Word "PER" | | 72 | KODE | 0
1 | Continue reading plot cards. After processing this plot card, end reading plot cards. | #### (4) Stereo Frames Input is identical to that for perspective views except that word "STE" is used in columns 53-55. The USSAERO Program is
restricted to a total of 600 singularity panels on the wing-fin-canard combination. There is an additional restriction that the total number of singularity panels in the spanwise direction on the wing-fin-canard combination cannot exceed 20. The remaining input cards contain detailed description of the singularity paneling of each component of the configuration. Each card contains up to ten (10) values, each value punched in a 7-column field with a decimal point, and may be identified in columns 73-80. The cards are arranged in the following order: - 1) Title Card, 2) Options Card, 3) Control Integer, - 4) Reference Lengths, 5) Wing Data Cards, 6) Body Data Cards, - 7) Fin Data Cards, 8) Canard Data Cards, 9) Singularity Paneling Plot Information Cards and, finally, 10) Mach Number, Angle of Attack Cards. ### Singularity Paneling Geometry | Columns | Variable | <u>Value</u> | Description | |---------|----------|--------------|---| | 1-50 | TITLE2 | | This card contains identifying information. | ## Options | Columns | <u>Variable</u> | Value | Description | |---------|-----------------|-----------------------|---| | 1-3 | LINBC | 0
1 | Non-planar boundary condition. Planar boundary condition. | | 4-6 | THICK | 0
1 | Do not calculate wing thickness matrix. Calculate wing thickness matrix if LINBC = 1. | | 7-8 | PRINT | 0
1
2
3
4 | Print option flag. Print the pressures, the forces and the moments. Print option 0 and print the spanwise loads on the wing, fin and canard. Print option 1 and print the velocity components, source and vortex strengths. Print option 2 and print the steps in the iterative solution. Print option 3 and print the axial and normal velocity matrices. If PRINT 0, the panel geometry will be included in the printout. | | 9-12 | LCPA | blank | Not used. | | 13-15 | LCPB | blank | Not used. | | 16-18 | ITMETH | 0, 2 | Iterative solution method selection flag. Blocked GAUSS-SEIDEL iterative solution procedure. | | Columns | <u>Variable</u> | Value | Description | |---------|-----------------|------------|--| | 16-18 | ITMETH | 1 | Blocked JACOBI iterative solution procedure. | | | | 3 | Blocked controlled successive over-
relaxation iterative solution
procedure. | | | | 4 | Blocked successive over-relaxation iterative solution procedure. | | 19-21 | ITMAX | 0 | Maximum number of iterations set at 50. | | | | integer | Maximum number of iterations specified. | | 22-24 | CCTEST | 0.
real | Convergence criterion set at .001 Convergence criterion specified. | | 29-35 | DCTEST | 0.
real | Divergence criterion set at 1000. Divergence criterion specified. | | 36-42 | ALF1 | | Relaxation factor < 1 | | 43-49 | ALF2 | | Relaxation factor > 1 | ## Control Integers | Columns | Variable | Value | Description | |---------|----------|--------|--| | 1-3 | к0 | 0 | Reference length flag. No reference length to be read. Reference length to be read. | | 4-6 | Kl | 0 1 3 | Wing definition flag. No wing data to be read. Wing data follows. Wing has sharp leading edge. Wing data follows. Wing has round leading edge. | | 7-9 | К2 | 0
1 | Body (fuselage) definition flag.
No fuselage data to be read.
Fuselage data to be read. | | 10-12 | к3 | | POD definition flag (Not used). | | 13-15 | К4 | 0
1 | Fin definition flag.
No fin data to be read.
Fin data follows. Fin has sharp
leading edge. | | Columns | <u>Variable</u> | Value | Description | |---------|-----------------|-------------|--| | 13-15 | к4 | 3 | Fin data to be read. Fin has round leading edge. | | 16-18 | K5 | 0
1
3 | Canard (horizontal tail) definition flag. No canard data to be read. Canard data to follow. Canard has sharp leading edge. Canard data follows. Canard has round leading edge. | | 19-21 | К6 | | Not used. | | 22-24 | KWAF | 0 | Number of wing sections used to define the inboard and outboard panel edges. If KWAF = 0, the panel edges are defined by NWAF in geometry input. | | 24-27 | KWAFOR | 0
3-30 | Number of ordinates used to define the leading and trailing edges of the wing panels. If KWAFOR = 0, the panel edges are defined by NWAFOR in the input geometry. | | 28-30 | KFUS | | Number of fuselage segments. The program sets KFUS = NFUS. | | 31-33 | KRADX(1) | 0
3-20 | Number of meridian lines used to define panel edges of first body segment. There are 3 options for defining the panel edges. If KRADX(1) = 0, the meridian lines are defined by NRADX(1) in geometry input. If KRADX(1) is positive, the meridian lines calculated at equally spaced PHIK's. If KRADX(1) is negative, the meridian lines are calculated at specified values of PHIK. | | 34-36 | KFORX(1) | 0,
2-30 | Number of axial stations used to define leading and trailing edges of panels on first body segment. If KFORX(1)=0, the panel edges are defined by NFORX(1) in the geometry input. | | 37-39 | KRADX(2) | 0,
3-20 | Same as KRADX(1), but for second body segment. | | Columns | <u>Variable</u> | Value | Description | |---------|-----------------|------------|---| | 40-42 | KFORX (2) | 0,
2-30 | Same as KFORX(1), but for second body segment | | 43-45 | KRADX(3) | 0,
3-20 | Same as KFORX(1), but for third body segment. | | 46-48 | KFORX(3) | 0,
2-30 | Same as KFORX(1), but for third body segment. | | 40 61 | ער ארטערטע | n | O | ## Configuration Paneling Description Control Integers | Columns | <u>Variable</u> | Value | Description | |---------|-----------------|------------|--| | 1-3 | KF(1) | 0,
2-20 | Number of fin sections used to define the inboard and outboard panel edges on the first fin. If $KF(1) = 0$, the root and tip chords define the panel edges. | | 4-6 | KFINOR(1) | 0,
3-30 | Number of ordinates used to define
the leading and trailing edges of
the fin panels on the first fin. If
KFINOR(1) = 0, the panel edges are
defined by NFINOR. | | 7-9 | KF(2) | 0,
2-20 | Same as for KF(1), but for second fin. | | 10-12 | KFINOR(2) | 0,
3-30 | | | 13-15 | KF (3) | 0,
2-20 | Same as for $KF(1)$, but for third fin. | | 16-18 | KFINOR(3) | 0,
3-30 | Same as for KFINOR(1), but for third fin. | | 19-21 | KF (4) | 0,
2-20 | Same as for KF(1), but for fourth fin. | | Columns | <u>Variable</u> | <u>Value</u> | Description | |---------|-----------------|--------------|--| | 22-24 | KFINOR(4) | 0,
3-30 | Same as for KFINOR(1), but for fourth fin. | | 25-27 | KF (5) | 0,
2-20 | Same as for KF(1), but for fifth fin. | | 28-30 | KFINOR(5) | 0,
3-30 | Same as for KFINOR(1), but for fifth fin. | | 31-33 | KF (6) | 0,
2-20 | Same as for KF(1), but for sixth fin. | | 34-36 | KFINOR(6) | 0,
3-30 | Same as for KFINOR(1), but for sixth fin. | | 37-39 | KCAN (1) | 0,
2-20 | Number of canard sections used to define edges on the first canard. If KCAN(1) = 0, the root tip chords define the panel edges. If KCAN(1) negative, no vortex sheets carry through the body and concentrated vortices are shed from the inboard edge of the canard or tail surface. | | 40-42 | KCANOR(1) | 0,
3-30 | Number of ordinates used to define
the leading and trailing edges of
the first canard. If KCANOR(1) = 0,
the panel edges are defined by NCANOR. | | 43-45 | KCAN(2) | 0,
2-20 | Same as for KCAN(1), but for second canard. | | 46-48 | KCANOR(2) | 0,
3-30 | Same as for KCANOR(1), but for second canard. | | 49-51 | KCAN (3) | | Same as for KCAN(1) but for third canard. | | 52-54 | KCANOR(3) | 0,
3-30 | Same as for KCANOR(1), but for third canard. | | 55-57 | KCAN (4) | 0,
2-20 | Same as for KCAN(1), but for fourth canard. | | 58-60 | KCANOR(4) | 0,
3-30 | Same as for KCANOR(1), but for fourth canard. | | Columns | <u>Variable</u> | <u>Value</u> | Description | |---------|-----------------|--------------|--| | 61-63 | KCAN (5) | 0,
2-20 | Same as for KCAN(1), but for fifth canard. | | 64-66 | KCANOR (5) | 0,
3-30 | Same as for KCANOR(1), but for fifth canard. | | 67-69 | KCAN (6) | 0,
2-20 | Same as for KCAN(1), but for sixth canard. | | 70-72 | KCAN (6) | 0,
3-30 | Same as for KCANOR(1), but for sixth canard. | REFERENCE LENGTHS: This card can be identified with REFL in columns 73-80, and contains the following: | Columns | <u>Variable</u> | Value | Description | |---------|-----------------|-------
---| | 1-7 | REFAR | | Wing reference area. If REFAR = 0, the value of the reference area is defined as the value of REFA in the geometry input. | | 8-14 | REFB | | Wing semi-span. If REFB = 0, a value of 1.0 is used for the reference semi-span. | | 15-21 | REFC | | Wing reference chord. If REFC = 0, a value of 1.0 is used for the reference chord. | | 22-28 | REFD | | Body reference diameter. If FERD = 0, a value of 1.0 is used for the reference diameter. | | 29-35 | REFL | | Body reference length. If REFL = 0, a value of 1.0 is used for the reference length. | | 36-42 | REFX | | X-coordinate of moment center. | | 43-49 | REFZ | | Z-coordinate of moment center. | ## Wing | Columns | Variable | Value | Description | |---------------------|----------|-------|---| | 1-7
8-14
etc. | RHO | | Cards containing NWAF values. RADII of wing leading edge, expressed in percent of the chord. Required, only if K1 = 3. It may be identified in columns 73-80 by RHOJ, where J denotes the number of the last radius given on that card. This card contains NWAF values RHO. | | 1-7
8-14
etc | XAFK | | Cards containing WAFOR values of wing panel leading edge locations, expressed in percent chord. This card may be identified in columns 73-80 as XAFKJ, where J denotes the last location given on that card. Omit if KWAFOR=0. | | 1-7 | YK | | Card containing KWAF values of Y-coordinate of Wing panel inboard and outboard edges. This card may be identified in columns 73-80 by YKJ, where J denotes last Y-coordinate on that card. | ## Body (Fuselage) | Columns | Variable | Value | Description | |---------------------|----------|-------|---| | 1-7
8-14
etc. | PHIK | | Cards containing KRADX(1) values of the body meridian angles expressed in degrees, and may be identified in columns 73-80 by PHIKJ, where J denotes the body segment number. Convention used is that PHIK = 0. at the bottom of the body and PHIK = 180 at the top of the body. Omit, unless KRADX(1) is negative. Repeat same cards for each fuselage segment. | | 1-7
8-14
etc. | ХJ | | Array containing KFORX(1) values of X-coordinates of body axial stations. This card may be identified in columns 73-80 by XFUSKJ, where J denotes the body segment number. Omit if KFORX = 0. Repeat this card for each fuselage segment. | ## <u>Fin</u> | | | | | |---------------------|-----------------|-------|--| | Columns | <u>Variable</u> | Value | Description | | 1-7
8-14
etc. | RHO | | Array containing NF fin leading edge RADII. This array is required only if K4 = 3. This card is identified in columns 73-80 by RHOFIN. | | 1-7
8-14
etc. | XAFK | | Array containing KFINOR(1) values of fin panel leading edge locations. This card is required only if K4 = 1. It may be identified in columns 73-80 by KFINKJ, where J denotes the fin number. Repeat this card for each fin. | | 1-7
8-14
etc. | YK | | This array contains KF(1) values of the Z-coordinates of the fin panel inboard edges. This card is identified in columns 73-80 as ZFINKJ, where J denotes the fin number. These values start with the most inboard values. | | | | | Canard | | Columns | <u>Variable</u> | Value | Description | |---------------------|-----------------|-------|--| | 1-7
8-14
etc. | RHO | | Cards containing NCAN values of canard leading edge RADII, one value for each canard. This card can be identified in columns 73-80 as RHOCAN. This array is input only if K5 = 3. | | 1-7
8-14
etc. | XCAN | | Card containing KCANOR(1) values of canard panel leading edge X-coordinates expressed in percent chord. The cards may be identified in columns 73-80 by XCANKJ, where J denotes the canard number. Repeat this card for each canard. | | 1-7 | YK | | Card containing KCAN(1) values of Y-coordinates of panel inboard edges. This card may be identified in columns 73-80 by YCANKJ, where J denotes canard number. Repeat this card for each canard. | ## Plot Cards ## For ## (1) Orthographic Projections | Columns | <u>Variable</u> | <u>Value</u> | Description | | | | | | |---------|-----------------|--------------|--|--|--|--|--|--| | 1 | HORZ | | "X", "Y", or "Z" for horizontal axis. | | | | | | | 3 | VERT | | "X", "Y", or "Z" for vertical axis. | | | | | | | 5-7 | TEST1 | | Word "OUT" for deletion of hidden lines; otherwise, leave blank. | | | | | | | 8-12 | PHI | | Roll angle, degrees. | | | | | | | 13-17 | THETA | | Pitch angle, degrees. | | | | | | | 18-22 | PSI | | Yaw angle, degrees. | | | | | | | 48-52 | PLOTSZ | | PLOTSZ determines the size of plot (scale factor is calculated using PLOTSZ and the maximum dimension of configuration). | | | | | | | 53-55 | TYPE | | Word "ORT" | | | | | | | 72 | KODE | 0
1 | Continue reading plot cards. After processing this plot card, end reading plot cards. | | | | | | ## (2) Three-View Orthographic Plot | Columns | <u>Variable</u> | Value | Description | |---------|-----------------|-------|---| | 8-12 | PHI | | Y-origin on paper of plan view, in. | | 13-17 | THETA | | Y-origin on paper of side view, in. | | 18-22 | PSI | | Y-origin on paper of front view, in. | | 48-52 | PLOTSZ | | PLOTSZ determines size of plot. (A scale factor is calculated using PLOTSZ and the maximum dimension of the configuration.) | | 53-55 | TYPE | | Word "VU3" | | Columns | <u>Variable</u> | <u>Value</u> | Description | |---------|-----------------|--------------|--| | 72 | KODE | 0
1 | Continue reading plot cards After processing this plot card, end reading plot cards. | ## (3) Perspective Views | Columns | <u>Variable</u> | Value | Description | |---------|-----------------|-------|---| | 8-12 | PHI | | X-coordinate of view point in data coordinate system. | | 13-17 | THETA | | Y-coordinate of view point in data coordinate system. | | 18-22 | PSI | | Z-coordinate of view point in data coordinate system. | | 23-27 | XF | | X-coordinate of focal point in data coordinate system. | | 28-32 | YF | | Y-coordinate of focal point in data coordinate system. | | 33-37 | ZF | | Z-coordinate of focal point in data coordinate system. | | 38-42 | DIST | | Distance from eye to viewing - plane, in. | | 43-47 | FMAG | | Viewing - plane magnification factor; It controls size of projected image. | | 48-52 | PLOTSZ | | Diameter of viewing-plane. DIST and PLOTSZ determine a cone which is the field of vision. | | 53-55 | TYPE | | Word "PER" | | 72 | KODE | 0 | Continue reading plot cards. After processing this plot card, end reading plot cards. | ## (4) Stereo Frames Input is identical to that for perspective views except that word "STE" is used in columns 53-55. ### Mach Number, Angle of Attack | Columns | <u>Variable</u> | <u>Value</u> | Description | | | | | |---------|-----------------|--------------|---|--|--|--|--| | 1-7 | MACH | real | The free stream subsonic or supersonic Mach for which a solution is desired. This value indicates the last case for the current configuration was just run. After completion, the program will read geometry cards for the next configuration or terminate if no configuration remains. | | | | | | 3-14 | ALPHA | | The angle of attack in degrees for which a solution is desired. | | | | | | 15-21 | NORVEL | 0. | Apply the usual boundary condition of zero normal velocity on the body panels. Modify the usual boundary condition by the addition of the normal velocities specified on the normal velocity input cards. | | | | | | 22-28 | LMACH | blank | Local Mach number flag. Not used. | | | | | | 29-35 | FLDPTS | 0
<600 | No field point calculations
Velocities and pressures will be cal-
culated at the field points specified
on the field point coordinates input
cards. FLDPTS specifies the number of
field points. This card may be
identified in columns 73-80 by MALPHA. | | | | | | 50-56 | COPLAN* | 1.0 | Coplanar wing segment flag Program identifies coplanar wing segments and sets equivalent elements of KOPLAN array to one. Program does not identify coplanar wing segments. | | | | | ^{*}NOTE: This flag is input, only when the planar boundary condition option is chosen. This flag permits the program to detect coplanar wing
segments and take that condition into account when computing the transversal velocities. ## Field Point | Columns | <u>Variable</u> | <u>Value</u> | Description | |---------------------|-----------------|--------------|--| | 1-7
8-14
etc. | XPT | | Cards, containing X, Y, and Z-coordinates of flow-field points at which velocities and pressure coefficients are to be computed. Omit if FLDPTS = 0. | # Section 6 OUTPUT DATA The USSAERO program output consists of two parts: - 1) A complete listing of the input data cards, - 2) Program execution output. The quantity and type of execution output depends upon the PRINT option selected, the number of panels used, and/or the number of components of the configuration. The program execution output options are described below: The program prints the case description, Mach PRINT = 0number and angle of attack, followed by a table listing the panel number, control point coordinates (both dimensional and non-dimensional), pressure coefficient, normal force, axial force, and pitching moment. Separate tables are printed for the body and wing panels, noting that any tail, fin or canard panels are included with the wing output. If the planar boundary condition option has been selected, the results for the wing upper surface are given in one table, followed by a separate table giving the results for the wing lower surface. Additional tables giving the total coefficients on the body, the wing and the complete configuration follow the pressure coefficient tables. These include the reference area, reference span and reference chord, the normal force, axial force, pitching moment, lift and drag coefficients, and the center of pressure of the component. PRINT = 1 In addition to the output described for PRINT = 0, the program prints out additional tables giving the normal force, axial force, pitching moment lift and drag coefficients, and the center of pressure of each column of panels on the wing and tail surfaces. In addition, the indices of the first and last panel in the column are listed, together with the span, chord and origin of the column. - PRINT = 2 In addition to the output described for PRINT = 1, the program prints out tables listing the panel number, the source or vortex strength of that panel, and the axial velocity u, lateral velocity v, and vertical velocity w at the panel control point. The normal velocity is also calculated for body panels. Separate tables are printed for the body and wing panels, noting again that any tail, fin, or canard panels are included with the wing output. If the planar boundary condition option has been selected, separate tables are given for the wing upper and lower surfaces. - PRINT = 3 In addition to the output described for PRINT = 2, the program prints out the iteration number, and the source and vortex strength arrays obtained at each step of the iterative solution procedure. - PRINT = 4 In addition to the output described for PRINT = 3, the program prints out tables of the axial and normal velocity components which make up the elements of the aerodynamic matrices. The program prints out the matrix row number, and gives the number of elements in that row. A maximum of four matrix partitions will be printed if this option is selected, each of which is identified by a number and its influence description prior to printing the velocity component tables. If a negative value of PRINT is selected, the program prints all the information described above for the positive values, together with the complete panel geometry description of the configuration following the list of input cards. This consists of tables giving the wing panel corner points, control points, inclination angles, areas, and chords. If the configuration has a horizontal tail, fin or canard, additional tables are printed giving the same information as listed above for the wing. Finally, if the configuration includes a body, the body panel corner points, control points, areas, and inclination angles are listed. The program output is illustrated in Appendix B. ### Section 7 ### REFERENCES - 1. Craidon, Charlotte B.: <u>Description of a Digital Computer</u> <u>Program for Airplane Configuration Plots.</u> NASA TM X-2074. 1970. - 2. Woodward, F. A.: An Improved Method for the Aerodynamic Analysis of Wing-Body-Tail Configurations in Subsonic and Supersonic Flow. NASA CR-2228, Parts I and II, 1973; Vol. I - Theory and Application. Vol. II Computer Program Description. - 3. Woodward, F. A.: USSAERO Computer Program Development, Versions B and C. NASA CR-3227, 1980. Appendix A LABELED COMMON BLOCKS IN USSAERO ### LIST OF SYMBOLS COMMON BLOCKS ROUTINES BODCOM USSAERO, BODVEL, SUBPAN, SUPPAN BTHET USSAERO, BODVEL, WNGVEL, BODPAN BLANK USSAERO, GEOM, CONFIG, NEWORD, WNGPAN, NEWRAD, BODPAN, NUTORD, TALPAN, GPLTSV, PLTORT, OTHPLT, PLTSTE, SPPLT, SPLTSV BLANK2 USSAERO, GEOM, CONFIG, CONPLT, GPLTSV, PLTORT, OTHPLT, PLTSTE, SPPLT, SPLTSV COEF USSAERO, DERIV, COMCU, NEWORD, NUTORD COMPS USSAERO, LINVEL, SORVEL, VORVEL COMPV USSAERO, WNGVEL, VORPAN CONPLT USSAERO, CONPLT CLINE USSAERO, BODPAN, PLPRES **EPS** USSAERO, PANEL, WNGPAN, TALPAN, VELCMP, SUBPAN, SUPPAN, LINVEL, SORVEL, VORVEL, WNGVEL, VORPAN, ITRATE, FORMON FORM USSAERO, SOLVE, FORMOM FILES USSAERO, GEOM, CONFIG, NEWORD, WNGPAN, NEWRAD, BODPAN, NUTORD, TALPAN, VELCMP, BODVEL, SUPPAN, LINVEL, WNGVEL, SOLVE, INVERT, PARTIN, DIAGIN, ITRATE, FORMOM, CONPLT, GPLTSV, PLTORT, PLOTIT, PLTSTE, SPPLT, PLTIT3, SPLTSV, PSPRES, LABEL GRAPH USSAERO, GEOM, CONFIG, WNGPAN, BODPAN, TALPAN, FORMOM, CONPLT, PLTORT, OTHPLT, PLTSTE, SPPLT, PLPRES, PRSWNG, LABEL HEAD USSAERO, GEOM, FORMOM, PLTORT, PLTSTE ITERAT USSAERO, GEOM, ITRATE ITB USSAERO ITB1 **USSAERO** ΚP VELCMP, SOLVE COMMON BLOCKS ROUTINES KUTTA USSAERO, WNGPAN, TALPAN, VELCMP, BODVEL LINCOM USSAERO, WNGPAN, TALPAN, VELCMP, SOLVE LWB USSAERO, GEOM, VELCMP, SOLVE, CONPLT MATCOM USSAERO, VELCMP, SOLVE NEWCOM USSAERO, GEOM, NEWORD, WNGPAN, NEWRAD, BODPAN, NUTORD, TALPAN, VELCMP, BODVEL, FORMOM, PLTORT, OTHPLT, SPPLT, SPLTSV, PLPRES NORVEL USSAERO, VELCMP, SOLVE ONE USSAERO, CONFIG, GPLTSV, OTHPLT, SPPLT PΙ USSAERO, CONFIG, WNGPAN, NEWRAD, BODPAN, TALPAN, SUBPAN, SUPPAN, LINVEL, SORVEL, VORVEL, WNGVEL, VORPAN, SOLVE, GPLTSV, OTHPLT, STERPT, PLPRES PTYPE USSAERO, CONPLT, PLTORT, OTHPLT, PLTSTE, GEOM POINT USSAERO, PANEL WNGPAN, NEWRAD, BODPAN, TALPAN, DIAGIN, ITRATE, FORMOM PARAM USSAERO, GOEM, WNGPAN, BODPAN, TALPAN, VELCMP, BODVEL, LINVEL, VORVEL, WNGVEL, VORPAN, SOLVE, PARTIN, DIAGIN, ITRATE, PRESS, FORMOM, PLPRES. LABEL PRESS USSAERO, GEOM, SOLVE, FORMOM, PLPRES SEG USSAERO, GOEM, WNBPAN, TALPAN, VELCMP, BODVEL LINVEL, WNGVEL, SOLVE, PARTIN, DIAGIN, ITRATE, FORMOM, PLPRES SCRAT USSAERO, GEOM, PANEL, CONFIG, NEWORD, WNGPAN, NEWRAD, BODPAN, NUTORD, TALPAN, VELCMP, BODVEL, LINVEL WNGVEL, SOLVE, PARTIN, ITRATE, FORMOM, **GPLTSV** SCALE USSAERO, PLPRES, PRESWNG, PRESBO, LABEL SUPER USSAERO, VELCMP, SOLVE TRAN USSAERO, WNGVEL, TRANS SUPSUB USSAERO, GEOM, WINGPAN, TALPAN, VELCMP COMMON BLOCKS ### ROUTINES VELCOM USSAERO, GEOM, WNGPAN, BODPAN, TALPAN, VELCMP, BODVEL, LINVEL, WNGVEL, SOLVE, PARTIN, DIAGIN, ITRATE, FORMOM Appendix B SAMPLE INPUT AND OUTPUT DATA | 0 -1 | | L51F0 | 7 TRANSO | | | DEFIN1T | ION | | | -2 | |--------|----------|--------|----------|--------|-------|---------|---------|-------|-------|-------------| | 0. | _ | .75 | 1.25 | | | 7.5 | 10. | 15. | 20. | XAF1 | | 25. | 30. | | 40. | 45. | | | 60. | | 70. | XAF2 | | 75. | 80. | 85. | | 95. | | | | | | XAF3 | | 14.325 | 1.6 | 0. | 7.1 | | | | | | | WAFORG | | 25.375 | 12. | 0. | 4.5 | | | | | | | WAFORG | | 0. | .464 | .563 | .718 | .981 | 1.313 | 1.591 | 1.824 | 2.194 | 2.474 | WAFORD | | 2.687 | 2.842 | | | | 2.925 | 2.793 | | | 2.087 | WAFORD | | | 1.437 | 1.083 | | | .013 | | | | | WAFORD | | 0. | .464 | | 718 | | | 1.591 | 1.824 | 2.194 | 2.474 | | | 2.687 | | | | 2.992 | | 2.793 | | | | WAFORD | | 1.775 | | 1.083 | .727 | .370 | .013 | | | | | WAFORD | | 0. | 2. | 4. | 6. | 8. | | 12. | 14. | 16. | 18. | XFUS1 | | 20. | 22. | 24. | 26. | 28. | 30. | | 34. | | 38. | XFLS2 | | 0. | | | 3.385 | | | | | | | FUSARD | | 6.7616 | 8.6049 | | 7.4506 | | | | | | | FUSARD | | | 6. 2 | . 4. | | | | • | 10.703 | | | O GPLOT | | X Z DU | T 30. 30 | 0. 30. | | | | | 10.DRT | | | O GPLOT | | X Y DU | T 30. 30 | 0. 30. | | | | | 10.DRT | | | 1 GPLOT | | | | | WING-BO | DY PAN | ELING | | | | | | | 0 1 | | 3 | | | | | | | | | | 1 3 | ì | | 6 15 | 1 0 | 18 | | | | | | | 144. | 12. | 6.125 | | _ | 20. | | | | | PEFA
Rho | | 0. | 2.5 | 5. | 10. | 15. | 20. | 30. | 40. | 50. | 60. | XAFK1 | | 70. | | | 95. | | | | | | | XAFK2 | | 1.60 | 3.60 | | | 10.80 | 12.0 | | | | | YK | | 0. | 2. | 5. | 8. | 11. | 13. | 14.325 | 15.73. | 17.16 | 18.59 | KFORX1 | | 20.02 | 21.425 | | | 28.0 | 33.0 | 36.0 | 38.0 | | | KFDRX2 | | . X Y | 0. | 0. | 0. | | | | 10. ORT | | | O SPPLT | | χż | 0. | 0. | 0. | | | | 10.0RT | | | 1 SPPLT | | •6 | 4. | - • | | | | | | | | | | -1. | | | | | | | | | | | | ****** | ****** | ********** | • • • • • • • • • • • • • • • • • • • | ******* | ************ | ******* | *********** | |---------|---------|------------------------------|---------------------------------------|--------------|----------------------|--------------|-----------------------| | | | | | | | | | | ยชบ | บยบ | \$222222255 | 2222222222 | ****** | EEEEEEEEEEE | RRRRRRRRRRR | 00000000000 | | LUU | บบบ | 22222222222 | 2222222222 | | EEEEEEEEEEE | RRRRRRRRRRR | 0000000000 | | บบบ | บบบ | \$\$\$ \$\$\$ | 555 555 | AAA AAA | EEE | RRR RRR | 000 000 | | UUU | บบบ | \$\$ \$ | \$55 | AAA AAA | £EE . | RRR RKR | 000 000 | | UUU | UUU | \$\$\$ | \$\$\$ | AAA AAA | EEE | PRRRRPRRRRRR | 000 000 | | いいい | บบบ | 2222222222 | \$\$\$\$\$\$\$\$\$\$\$\$ | **** | EEEEEEE | RRRRRRRRRRR | 000 000 | | しいい | UUU | 2222222222 |
\$\$\$\$\$\$\$\$\$\$\$\$ | ************ | EEEEEEE | RRRRRR | 600 000 | | טניז | บบบ | \$5\$ | 222 | AAA AAA | EEE | RRR RRR | 000 000 | | UUU | บบเ | \$\$\$ | 5 5 5 | AAA AAA | EEE | PRR RRR | 000 010 | | EUU | บบบ | 555 555 | 222 222 | *** *** | EEE | RRR RRR | 000 000 | | ยเบบบบ | บบบบบบ | \$\$\$\$\$\$\$\$\$\$\$\$\$\$ | 22222333555 | AAA AAA | EEEEFFEEEEE | RRR RRR | 6000 000 00000 | | เกรเกกก | UUUUUU | \$\$\$\$\$\$\$\$\$\$\$\$\$\$ | \$\$\$\$\$\$\$\$\$\$\$\$ | AAA AAA | 333333 333333 | RRR RRR | 00000000000 | | ****** | ******* | *********** | ************ | ********** | ************ | *********** | | NASA-LANGLEY RESEARCH CENTER , CDC CYBER SERIES UNIFIED SUBSONIC-SUPERSONIC AERODYNAMICS PROGRAM VERSION 801 - NDS-FTN DATE OF RUN 79/08/31. TIME OF RUN 09.47.20. #### LIST OF INPUT CARDS ## | ļ | NACA RM | L51F0 | 7 TRANSO | NIC WIN | G-80DY | DEFINIT | 10N | | | | |---------|----------|-------|----------|---------|--------|---------|--------|-------|-------|----------------| | 0 -1 | | | 1 2 26 | | | | -, | | | -2 | | 0. | •50 | •75 | 1.25 | 2.50 | 5.0 | 7.5 | 10. | 15. | 20. | XAF1 | | 25. | 30. | 35. | 40. | 45. | 50. | 55. | 60. | 65. | 70. | XAF2 | | 75. | 80. | 85. | 90. | 95. | 100. | | | | | XAF3 | | 14.325 | 1.6 | 0. | 7.1 | | | | | | | WAFORG | | 25.375 | 12. | 0. | 4.5 | | | | | | | WAFORG | | 0. | .464 | .563 | .718 | .981 | 1.313 | 1.591 | 1.824 | 2.194 | 2.474 | WAFCRO | | 2.687 | 2.842 | 2.945 | | 2.992 | 2.925 | 2.793 | 2.602 | 2.364 | 2.087 | WAFDRD | | 1.775 | 1.437 | 1.083 | .727 | .370 | .013 | | | | | WAFDRD | | 0. | .464 | .563 | .718 | .981 | 1.313 | 1.591 | 1.824 | 2.194 | 2.474 | WAFGRD | | 2.687 | 2.842 | 2.945 | 2.996 | 2.992 | 2.925 | 2.793 | 2.602 | | 2.087 | WAFORD | | 1.775 | 1.437 | | .727 | .370 | .013 | | | | | WAFDRD | | 0. | 2. | 4. | 6. | 8. | 10. | 12. | 14. | 16. | 18. | XFUS1 | | 20. | 22. | 24. | 26. | 28. | 30. | 32. | 34. | 36. | 38. | XFUS2 | | 0. | .7329 | 1.960 | 7 3.385 | | 6.0524 | | | | | FUSARD | | 8.7616 | 8.6049 | | 7.4506 | | | | | | | FUSARD | | | | 4. | | • | | | 10.VU3 | | | O GPLOT | | X Z DU1 | r 30. 30 | 30. | • | | | | 10.DRT | | | O GPLOT | | X Y GUI | 30. 30 | 30. | , | | | | 10.ORT | | | 1 GPLOT | | | | | WING-BO | DY PANE | LING | | | | | | | 0 1 | -3 | 3 | | | | | | | | | | 1 3 | 1 | | 6 15 | 1 0 1 | 18 | | | | | | | 144. | 12. | 6.125 | • | | 20. | | | | | REFA | | .229 | .229 | | | | | | | | | RHO | | 0. | 2.5 | 5. | 10. | 15. | 20. | 30. | 40. | 50. | 60. | XAFK1 | | 70. | 80. | 90. | 95. | 100. | | | | - | | XAFKZ | | 1.60 | 3.60 | 6.00 | 8.40 | 10.80 | 12.0 | | | | | YK | | 0. | 2. | 5. | 8. | 11. | 13. | 14.325 | 15.73 | 17.16 | 18.59 | KFORX1 | | 20.02 | 21.425 | 23.00 | 25.0 | 28.0 | 33.0 | 36.0 | 38.0 | | | KFORX2 | | XY | 0. | 0. | 0. | | | - | 10.ORT | | | O SPPLT | | X Z | 0. | 0. | 0. | | | | 10.DRT | | | 1 SPPLT | | • 6 | 4. | | | | | | - • | | | 7 - | | -1. | | | | | | | | | | | WING PANEL CORNER POINT COORDINATES 1 AND 3 INDICATE WING PANEL LEADING-EDGE POINTS, 2 AND 4 INDICATE TRAILING-EDGE POINTS | PANEL | x | Y 1 | z
1 | X
2 | Y 2 | 2 2 | X
3 | Y
3 | l
3 | X. | ٧. | Z ₄ | |----------|----------------------|---------|---------|----------------------|--------------------|---------|----------------------|--------------------|---------|----------|---------|------------------| | | • | • | • | - | - | • | • | , | • | • | • | - | | 1 | 14.32500 | 1.60000 | 0.00000 | 14.50250 | 1.60000 | .06965 | 16.45000 | 3.60000 | 0.00000 | 16.61500 | 3.60000 | .06475 | | 2 | 14.50250 | 1.60000 | | 14.68000 | 1.60000 | .09322 | 16.61500 | 3.60000 | .06475 | 16.78000 | 3.60000 | .08666 | | 3 | 14.68000 | 1.60000 | .09322 | 15.03500 | 1.60000 | .12950 | 16.78000 | 3.60000 | .08666 | 17.11000 | 3.60000 | .12036 | | 4 | 15.03500 | 1.60000 | | 15.39000 | 1.60000 | | 17.11000 | 3.60000 | | 17.44000 | 3.60000 | •14480 | | 5 | 15.39000 | 1.60000 | | 15.74500 | 1.60000 | | 17.44000 | 3.60000 | | 17.77000 | 3.60000 | .16328 | | 6 | 15.74500 | 1.60000 | | 16.45500 | 1.60000 | | 17.77000 | 3.60000 | | 18.43000 | 3.66000 | .18757 | | 7 | 16,45500 | 1.60000 | | 17.16500 | 1.60000 | | 18.43000 | 3.6000 0 | | 19.09000 | 3.66000 | .19774 | | 8 | 17.16500 | 1.60000 | | 17.87500 | 1.60000 | | 19.09000 | 3.60000 | | 19.75000 | 3.60000 | .19305 | | 9 | 17.87500 | 1.60000 | | 18.58500 | 1.60000 | | 19.75000 | 3.60000 | | 20.41000 | 3.60000 | .17173 | | 10 | 18.585CO | 1.60000 | | 19.29500 | 1.60000 | | 20.41000 | 3.60000 | | 21.07000 | 3.60000 | •13774 | | 11 | 19.29500 | 1.60000 | | 20.00500 | 1.60000 | | 21.07000 | 3.60000 | | 21.73000 | 3.60000 | .09484 | | 12 | 20.00500 | 1.60000 | | 20.71500 | 1.60000 | | 21.73000 | 3.60000 | | 22.39000 | 3.60000 | .04798 | | 13 | 20.71500 | 1.60000 | | 21.07000 | 1.60000 | | 22.39000 | 3.60000 | | 22.72000 | 3.60000 | .02442 | | 14 | 21.07000 | 1.60000 | | 21.42500 | 1.60000 | | 22.72000 | 3.60000 | | 23.05000 | 3.60000 | 48000 | | 15 | 14.32500 | 1.60000 | | 14.50250 | 1.60000 | - | 16.45000 | 3.60000 | | 16.61500 | 3.66000 | 06475 | | 16 | 14.50250 | 1.60000 | | 14.68000 | 1.60000 | | 16.61500 | 3.60000 | | 16.78000 | 3.60000 | 08666 | | 17 | 14.66000 | 1.60000 | | 15:03500 | 1.60000 | | 16.75000 | 3.60000 | | 17.11000 | 3.66000 | 12038 | | 18 | 15.03500 | 1.60000 | | 15.39000 | 1.60000 | | 17.11000 | 3.60000 | | 17.44660 | 3.60000 | 14480 | | 19 | 15.39000 | 1.60000 | | 15.74500 | 1.60000 | | 17.44000 | 3.60000 | | 17.77000 | 3.60000 | 16328 | | 20 | 15.74500 | 1.60000 | | 16.45500 | 1.60000 | | 17.77000 | 3.60000 | | 18.43000 | 3.60000 | 16757 | | 21 | 16.45500 | 1.60000 | | 17.16500 | 1.60000 | | 18.43000 | 3.60000 | | 19.09000 | 3.60000 | 19774 | | 22 | 17.16500 | 1.60000 | | 17.87500 | 1.60000 | | 19.09000 | 3.60000 | | 19.75000 | 3.60000 | 19305 | | 23 | 17.87500 | 1.60000 | | 18.58500 | 1.66000 | | 19.75000 | 3.60000 | | 20.41000 | 3.60000 | 17173 | | 24 | 18.58500 | 1.60000 | | 19.29500 | 1.60000 | | 20.41000 | 3.60000 | | 21.07000 | 3.60000 | 13774 | | 25
26 | 19.29500 | 1.60000 | | 20.00500 | 1.60000 | | 21.07000 | 3.60000 | | 21.73000 | 3.60000 | 09484 | | | 20.00500 | 1.60000 | | 20.71500 | 1.60000 | | 21.73000 | 3.60000 | | 22.39000 | 3.60000 | 04798 | | 27
28 | 20.71500 | 1.60000 | | 21.07000 | 1.60000 | | 22.39000 | 3.60000 | | 22.72000 | 3.60000 | 02442 | | 29 | 21.07000
16.45000 | 1.60000 | | 21.42500
16.6150D | 1.60000
3.60000 | | 22.72000
19.00000 | 3.60000
6.00000 | | 23.05000 | 3.60000 | 00066 | | 30 | | 3.60000 | | | 3.60000 | | | | | 19.15000 | 6.00000 | .05886 | | 31 | 16.61500
16.76000 | 3.60000 | | 16.78000 | 3.60000 | | 19.15000 | 6.00000 | | 19.30000 | 6.00000 | .07878
.10944 | | 32 | 17.11000 | 3.60000 | | 17.44°C00 | 3.60000 | | 19.50000 | 6.00000 | | 19.60000 | 6.00000 | | | 33 | 17.44000 | 3.60000 | | 17.77000 | 3.60000 | | 19.90000 | 6.00000 | | 20.20000 | 6.00000 | .13164
.14844 | | 34 | 17.77000 | 3.60000 | | 18.43000 | 3.60000 | | 20.20000 | 6.00000 | | 20.20000 | 6.00000 | .17052 | | 35 | 16,43000 | 3.60000 | | 19.09000 | 3.60000 | | 20.80000 | 6.00000 | | 21.40000 | | .17976 | | 36 | 19.09000 | 3.60000 | | 19.75000 | 3.60000 | | 21.40000 | 6.00000 | | 22.00000 | 6.00000 | •17550 | | 37 | 19.75000 | 3.60000 | | 20.41000 | 3.60000 | | 22.00000 | 6.00000 | | 22.60000 | 6.00000 | •17550
•15612 | | 36 | 20.41000 | 3.60000 | | 21.07000 | 3.60000 | | 22.60000 | 6.00000 | | 23.20000 | 6.00000 | .12522 | | 39 | 21.07000 | 3.60000 | | 21.73000 | 3.60000 | | 23.20000 | 6.00000 | | 23.80000 | 6.00000 | .06622 | | 40 | 21.73000 | 3.60000 | | 22.39000 | 3.60000 | | 23.80000 | | | 24.40000 | | | | 41 | 22.39000 | 3.60000 | | 22.72000 | 3.60000 | | 24.40000 | 6.00000 | | 24.70000 | 6.0000 | .04362 | | 42 | 22.72000 | 3.60000 | | 23.05000 | | | | 6.00000 | | | 6.00000 | .02220 | | 7/ | 22.12000 | | | 23.07000 | 3.60000 | * 00080 | 24.70000 | 6.00000 | •02620 | 25.00000 | 6.00000 | .00078 | | 92 | 23.71000 | 8.40000 | -16178 | 24.25000 | 8.40000 | .15795 | 26.02000 | 10.80000 | .14381 | 26.50000 | 10.80000 | -14040 | |-----|----------|-----------|---------|----------|----------|---------|----------|------------------|---------|----------|----------|--------| | 93 | 24.25000 | 8.40000 | | 24.79000 | 8.40000 | | 26.50000 | | | 26.98000 | | .12490 | | 94 | 24.79000 | 8.40000 | | 25.33000 | 8.40000 | | 26.98000 | | | 27.46000 | | .10018 | | 95 | 25.33000 | 8.40000 | | 25.87000 | 8.40000 | | 27.46000 | | | 27.94000 | | .06698 | | 96 | 25.87000 | 8.40000 | | 26.41000 | 8.40000 | | 27.94000 | | | 28.42000 | | .03490 | | 97 | 26.41000 | 8.40000 | | 26.68000 | 8.40000 | | 28.42000 | | | 28.66000 | | .01776 | | 98 | 26.66000 | 8.40000 | | 26.95000 | 8.40000 | | 28.66000 | | | 28.90600 | | .00062 | | 99 | 21.55000 | 8.40000 | | 21.68500 | 8.40000 | | 24.10000 | | | 24.22000 | | 04709 | | 100 | 21.66500 | 8.40000 | | 21.82000 | 8.40000 | | 24.22000 | | | 24.34000 | - | 06302 | | 101 | 21.82000 | 8.40000 | | 22.09000 | 8.40000 | | 24.34000 | | | 24.58000 | | 08755 | | 102 | 22.09000 | E . 40000 | | 22.36000 | 8.40000 | | 24.56000 | | 08755 | 24.82000 | 10.80000 | 10531 | | 103 | 22.36000 | 8.40000 | 11848 | 22.63000 | 8.40060 | | 24.82000 | | 10531 | 25.06000 | 10.EC0C0 | 11:75 | | 104 | 22.63000 | 8.40000 | | 23.17000 | 8.40000 | 15347 | 25.06000 | 10.80000 | 11t75 | 25.54000 | 10.80000 | 13642 | | 105 | 23.17000 | 8.40000 | 15347 | 23.71000 | 8.40000 | 16178 | 25.54000 | 10.80000 | 13642 | 26.02000 | 10.56000 | 14381 | | 106 | 23.71000 | 8.40000 | 16178 | 24.25000 | 8.40000 | 15795 | 26.02000 | 10.80000 | 14381 | 26.50000 | 10.80000 | 14640 | | 107 | 24.25000 | 8.40000 | 15795 | 24.79000 | 8.40000 | 14051 | 26.50000 | 10.80000 | 14040 | 26.98000 | 10.80000 | 12490 | | 108 | 24.79000 | 8.40000 | | 25.33000 | 8.40000 | 11270 | 26.98000 | 10.80000 | 12490 | 27.46000 | 10.80000 | 10018 | | 109 | 25.33000 | 8.40000 | | 25.87000 | 8.40000 | 07760 | 27.46000 | 10.60000 | 10018 | 27.94600 | 10.80000 | 06698 | | 110 | 25.87000 | e.40000 |
07760 | 26.41000 | 8.40000 | 03926 | 27.94000 | 10.80000 | 06898 | 28.42000 | 10.86060 | 03490 | | 111 | 26.41000 | 8.40000 | 03926 | 26.68000 | 8.40000 | 01998 | 28.42000 | 10.80000 | 03490 | 28.66000 | 10.80000 | 01776 | | 112 | 26.66000 | 8.40000 | 01998 | 26.95000 | 8.40000 | 00070 | 28.66000 | 10.80000 | 01776 | 28.90000 | 10.86000 | 06062 | | 113 | 24.10000 | 10.80000 | 0.00000 | 24.22000 | 10.80000 | .04709 | 25.37500 | 12.00000 | 0.00000 | 25.48750 | 12.00000 | .04415 | | 114 | 24.22000 | 10.80000 | •04709 | 24.34000 | 10.80000 | .06302 | 25.48750 | 12.00000 | .04415 | 25.60000 | 12.06060 | .05909 | | 115 | 24.34000 | 10.60000 | .06302 | 24.58000 | 10.80000 | .08755 | 25.60000 | 12.00000 | .05909 | 25.82500 | 12.00000 | .08208 | | 116 | 24.5F000 | 10.60000 | | 24.82000 | | .10531 | 25.82500 | 12.00000 | .06208 | 26.05600 | 12.00000 | .09873 | | 117 | 24.82000 | 10.80000 | .10531 | 25.06000 | 10.80000 | .11875 | 26.05000 | 12.00000 | .09873 | 26.27500 | 12.00000 | .11133 | | 118 | 25.06000 | 10.80000 | .11875 | 25.54000 | 10.80000 | .13642 | 26.27500 | 12.00000 | .11133 | 26.72500 | 12.00000 | .12789 | | 119 | 25.54000 | 10.80000 | .13642 | 26.02000 | 10.80000 | .14381 | 26.72500 | 12.00000 | .12789 | 27.17500 | 12.00000 | .13482 | | 120 | 26.02000 | 10.80000 | | 26.50000 | | .14640 | 27.17500 | 12.00000 | .13482 | 27.62500 | 12.00000 | .13163 | | 121 | 26.50000 | 10.60000 | •14040 | 26.98000 | 10.80000 | •12490 | 27.62500 | 12.00000 | .13163 | 28.07500 | 12.00000 | .11709 | | 122 | | 10.80600 | | 27.46000 | | | | 12.00000 | | 28.52500 | | .09392 | | 123 | 27.46000 | 10.80000 | .10018 | 27.94000 | 10.00000 | | | 12.00000 | •09392 | 28.97500 | 12.0C000 | .06467 | | 124 | | 10.80000 | | 28.42000 | | | | 12.000Q 0 | | 29.42500 | | .03271 | | 125 | 28.42000 | | | 28.66000 | | | | 12.00000 | | 29.65000 | | .01665 | | 126 | 28.66000 | | | 28.90000 | | | | 12.00000 | | 29.67500 | | .CG058 | | 127 | | 10.80000 | | 24.22000 | | | | 12.00000 | | | 12.00000 | 04415 | | 128 | | 10.00000 | | 24.34000 | | | | 12.00000 | | | 12.00000 | 05909 | | 129 | | 10.60000 | | 24.56000 | | | | 12.0000 | | | 12.00000 | 06208 | | 130 | | 10.80000 | | 24.82000 | | | | 12.00000 | | | 12.00000 | 09873 | | 131 | | 10.80000 | | 25.06000 | | | | 12.00000 | | | 12.00000 | 11133 | | 132 | | 10.80000 | | 25.54000 | | | | 12.00000 | | 26.72500 | | 12789 | | 133 | | 10.80000 | | 26.02000 | | | | 12.00000 | | 27.17500 | | 13482 | | 134 | | 10.80000 | | 26.50000 | | | | 12.00000 | | | 12.00000 | 13163 | | 135 | | 10.80000 | | 26.98000 | | | | 12.00000 | | | 12.0C000 | 11709 | | 136 | | 10.80000 | | 27.46000 | | | | 12.00000 | | | 12.00000 | 09392 | | 137 | | 10.80000 | | 27.94000 | | | | 12.00000 | | | 12.00000 | 06467 | | 138 | | 10.80000 | | 28.42000 | | | | 12.00000 | | 29.42500 | | 03271 | | 139 | | 10.80000 | | 28.66000 | | | | 12.00600 | | 29.65000 | | 01665 | | 340 | 28.56000 | 10.80000 | ~.01776 | 28.90000 | 10.80000 | ~.00062 | 24.65000 | 12.00000 | 01665 | 29.87500 | 12.00000 | 00058 | ### WING PAREL CENTROID POINTS AND INCLINATION ANGLES | POINT | X
CP | Ý
CP | Z
CP | THETA
RAD | DELTA
RAD | THETA
Deg | DELTA
Deg | |-------|----------|---------|---------|--------------|--------------|--------------|--------------| | 1 | 15.46024 | 2.58783 | .03361 | 39501 | .34749 | -22.63248 | 19.90948 | | 2 | 15.63156 | 2.58783 | .07860 | 14177 | .13072 | -8.12254 | 7.48960 | | 3 | 15.88855 | 2.58783 | .10749 | 11014 | .10123 | -6.31084 | 5.80025 | | 4 | 16.23120 | 2.58783 | .13768 | 08116 | .07362 | -4.64992 | 4.21429 | | 5 | 16.57386 | 2.58783 | .15995 | 06280 | .05583 | -3.59631 | 3.19891 | | 6 | 17.08783 | 2.58783 | .18215 | 04342 | .03675 | -2.48765 | 2.10555 | | 7 | 17.77314 | 2.58783 | .20004 | 02231 | .01539 | -1.27820 | . 88207 | | 8 | 18.45844 | 2.58783 | .20288 | 00066 | 00710 | 03760 | 40679 | | 9 | 19.14375 | 2.58783 | .18938 | •02296 | 03228 | 1.31578 | -1.84952 | | 10 | 19.82905 | 2.58783 | .16067 | •04047 | 05141 | 2.31857 | -2.94572 | | 11 | 20.51436 | 2.56783 | .12075 | .05242 | 06482 | 3.00356 | -3.71390 | | 12 | 21.19966 | 2.58783 | .07415 | •05758 | 07076 | 3.29916 | -4.05448 | | 13 | 21.71354 | 2.50783 | .03759 | .05792 | 07116 | 3.31829 | -4.07716 | | 14 | 22.05629 | 2.58783 | .01312 | •05792 | 07116 | 3.31829 | -4.07716 | | 15 | 15.46024 | 2.58783 | 03361 | •39501 | 34749 | 22.63248 | -19.90948 | | 16 | 15.63156 | 2.58783 | 07860 | .14177 | 13072 | 8.12254 | -7.48960 | | 17 | 15.68855 | 2.58783 | 10749 | •11014 | 10123 | 6.31084 | -5.80025 | | 18 | 16.23120 | 2.58783 | 13768 | .08116 | 07362 | 4.64992 | -4.21929 | | 19 | 16.57386 | 2.58783 | 15995 | .06280 | 05583 | 3.59831 | -3.19891 | | 20 | 17.08783 | 2.58783 | 18215 | .04342 | 03675 | 2.48765 | -2.10555 | | 21 | 17.77314 | 2.58783 | 20004 | .02231 | 01539 | 1.27820 | 88207 | | 22 | 18.45844 | 2.58783 | 20288 | •00066 | .00710 | .03760 | •40679 | | 23 | 19.14375 | 2.58783 | 18938 | 02296 | .03228 | -1.31578 | 1.84952 | | 24 | 19.82905 | 2.58783 | 16067 | 04047 | .05141 | -2.31857 | 2.94572 | | 25 | 20.51436 | 2.58783 | 12075 | 05242 | .06482 | -3.00356 | 3.71390 | | 26 | 21.19966 | 2.58783 | 07415 | 05758 | • 07076 | -3.29916 | 4.05448 | | 27 | 21.71364 | 2.58783 | 03759 | 05792 | .07116 | -3.31829 | 4.07716 | | 28 | 22.05629 | 2.58783 | 01312 | 05792 | .07116 | -3.31829 | 4,07716 | | 29 | 17.78357 | 4.78095 | .03092 | 39501 | .34749 | -22.63248 | 19.90948 | | 30 | 17.94119 | 4.78095 | .07232 | 14177 | .13072 | -8.12254 | 7.48960 | | 31 | 18.17762 | 4.78095 | .09889 | 11014 | .10123 | -6.31084 | 5.80025 | | 32 | 18.49286 | 4.78095 | .12666 | 08116 | •0736.2 | -4.64992 | 4.21829 | | 33 | 18.80810 | 4.78095 | .14715 | 06280 | .05583 | -3.59831 | 3.19891 | | 34 | 19.28095 | 4.78095 | .16758 | 04342 | .03675 | -2.48765 | 2.10555 | | 35 | 19.91143 | 4.78095 | .18404 | 02231 | .01539 | -1.27820 | .88207 | | 36 | 20.54190 | 4.78095 | .18665 | 00066 | 00710 | 03760 | 40679 | | 37 | 21.17238 | 4.78095 | .17423 | .02296 | 03228 | 1.31578 | -1.84952 | | 38 | 21.80286 | 4.78095 | .14782 | .04047 | 05141 | 2.31857 | -2.94572 | | 39 | 22.43333 | 4.78095 | .11109 | .05242 | 06482 | 3.00356 | -3.71390 | | 40 | 23.06381 | 4.78095 | .06622 | .05758 | 07076 | 3.29916 | -4.0544B | | 41 | 23.53667 | 4.78095 | .03458 | •05792 | 07116 | 3.31829 | -4.07716 | | 42 | 23.85190 | 4.78095 | .01207 | .05792 | 07116 | 3.31829 | -4.07716 | | 43 | 17.78357 | 4.78095 | 03092 | .39501 | 34749 | 22.63248 | -19.90948 | | | 45 4444 | | | | | | 2 40040 | |----------|----------------------|--------------------|--------------|----------------|-----------------|-----------|-------------------| | 44 | 17.94119 | 4.78095 | 07232 | •14177 | 13072 | 8.12254 | -7.48960 | | 45 | 18.17762 | 4.78095 | 09889 | .11014 | 10123 | 6.31084 | -5.80025 | | 46 | 18.49286 | 4.78095 | 12666 | .08116 | 07362 | 4.64992 | -4.21629 | | 47 | 18.80810 | 4.78095 | 14715 | .06280 | 05583 | 3.59631 | -3.19891 | | 48 | 19.28095 | 4.78095 | 16758 | .04342 | 03675 | 2.48765 | -2.10555 | | 49 | 19,91143 | 4.78095 | 18404 | .02231 | 01539 | 1.27820 | 88207 | | 50 | 20.54190 | 4.78095 | 18665 | .00066 | .00710 | .03760 | .40679 | | 51 | 21.17238 | 4.78095 | ~.17423 | 02296 | .03228 | -1.31578 | 1.84952 | | 52 | 21.00286 | 4.76095 | 14782 | 04047 | .05141 | -2.31857 | 2.94572 | | 53 | 22.43333 | 4.78095 | 11109 | 05242 | .06482 | -3.00356 | 3.71390 | | 54 | 23.06381 | 4.78095 | 06822 | 05758 | •07076 | -3.29916 | 4.05448 | | 55 | 23.53667 | 4.78095 | 03458 | 05792 | •07116 | -3.31P29 | 4.07716 | | 56 | 23.85190 | 4.78095 | 01207 | 05792 | •07116 | -3.31829 | 4.07716 | | 57 | 20.32395 | 7.17895 | .02798 | 39501 | .34749 | -22.63248 | 19.90948 | | 58 | 20.46658 | 7.17895 | .06544 | 14177 | •13072 | -8.12254 | 7.48960 | | 59 | 20.68053 | 7.17895 | .08949 | 11014 | .10123 | -6.31084 | 5.60025 | | 60 | 20.96579 | 7.17895 | •11462 | 08116 | .07362 | -4.64992 | 4.21629 | | 61 | 21.25105 | 7.17895 | .13316 | 06280 | .05583 | -3.59831 | 3.19891 | | 65 | 21,67895 | 7.17895 | .15165 | 04342 | .03675 | -2.48765 | 2.10555 | | 63 | 22.24947 | 7.17895 | 16654 | 02231 | .01539 | -1.27820 | .88207 | | 64 | 22,82000 | 7.17895 | .16890 | 00066 | 00710 | 03760 | 40679 | | 65 | 23.29053 | 7.17895 | •15766 | •02296 | 03228 | 1.31578 | -1.84952 | | 66 | 23.96105 | 7.17075 | .13376 | .04047 | 05141 | 2.31657 | -2.94572 | | 67 | 24.53158 | 7.17895 | •10053 | •05242 | 06482 | 3.00356 | -3.71390 | | 68 | 25.10211 | 7.17895 | .06173 | .05758 | 07076 | 3.29916 | -4.05448 | | 69 | 25.53000 | 7.17895 | .03129 | .05792 | 07116 | 3.31829 | -4.07716 | | 70 | 25.01526 | 7.17895 | .01093 | .05792 | 07116 | 3.31829 | -4.07716 | | 71 | 20.32395 | 7.17895 | 02798 | .39501 | 34749 | 22.63248 | -19.90948 | | 72 | 20.46658 | 7.17895 | 06544 | •14177 | 13072 | 8.12254 | -7.46960 | | 73 | 20.68053 | 7.17895 | 06949 | .11014 | 10123 | 6.31084 | -5.60025 | | 74 | 20.96579 | 7.17895 | 11462 | .08116 | 07362 | 4.64992 | -4.21829 | | 75 | 21.25105 | 7.17895 | 13316 | •0628 0 | 05583 | 3.59831 | -3.19891 | | 76 | 21.67895 | 7.17895 | 15165 | .04342 | 03675 | 2.48765 | -2.10555 | | 77 | 22.24947 | 7.17895 | 16654 | .02231 | 01539 | 1.27620 | 88207 | | 78 | 22.82000 | 7.17895 | 16890 | -00066 | +00710 | .03760 | .40679
1.84952 | | 79 | 23.39053 | 7.17895 | 15766 | 02296 | .03228 | -1.31578 | | | 80 | 23.96105 | 7.17895 | 13376 | 04047 | .05141 | -2.31857 | 2.94572 | | 81 | 24.53158 | 7 • 1 78 95 | 10053 | 05242 | .06482 | -3.00356 | 3.71390 | | 82 | 25.10711 | 7.17895 | 06173 | 05758 | •67076 | -3.29916 | 4.05448 | | 83 | 25.53000 | 7.17895 | 03129 | 05792 | •07116 | -3.31829 | 4.07716 | | 84 | 25.81526 | 7.17895 | 01093 | 05792 | .07116 | -3.31829 | 4.07716 | | 85 | 22.86382 | 9.57647 | .02504 | 39501 | -34749 | -22.63248 | 19.90948 | | 86 | 22.99147 | 9.57647 | •05856 | 14177 | •13072 | -8.12254 | 7.48960 | | 67 | 23.18294 | 9.57647 | •08009 | 11014 | .10123 | -6.31084 | 5.80025 | | 88 | 23.43624 | 9.57647 | .10258 | 06116 | .07362 | -4.64992 |
4.21829 | | 69
90 | 23.69353 | 9.57647 | •11917 | 06280 | .05563 | -3.59831 | 3.19891 | | 90 | 24.07647
24.58706 | 9.57647 | .13571 | 04342 | •03675 | -2.48765 | 2.10555 | | 92 | 25.09765 | 9.57647
9.57647 | .14904 | 02231 | •01539
00710 | -1.27820 | • 68207
40479 | | 42 | 22104103 | 4.31041 | .15116 | -•00066 | | 03760 | 40679 | | | WING PANEL | AREAS AND CHORDS | 47
48 | •75868 | .31524 | 96
97 | 1.22911 | .51059
.25529 | |----------|------------|------------------|------------|--------------------|------------------|------------|----------------|------------------| | PANEL | AREA | CHORD | *6
49 | 1.51445
1.51256 | •63048
•63048 | 98 | .61458 | .25529 | | 1 | 39466 | •17133 | 50 | 1.51296 | •63048 | 99 | •35260 | .12765 | | į | .34895 | .17133 | | | | | •31176 | .12765 | | 3 | .69272 | •34265 | 51
52 | 1.51319
1.51524 | .63048
.63048 | 100
101 | •6169 0 | .25529 | | 4 | .68913 | •34265 | 53 | | | 101 | •61569 | .25529 | | Š | .68742 | •34265 | 54 | 1.51727 | •63048 | 102 | .61417 | .25529 | | 6 | 1.37222 | .68530 | | 1.51831 | •63048 | 104 | 1.22598 | .51059 | | 7 | 1.37050 | .66530 | 55 | .75919 | .31524 | 105 | 1.22445 | .51059 | | é | 1.37003 | .68530 | 56 | .75919 | .31524 | | | | | 9 | 1.37108 | | 57 | .39409 | •14263 | 106 | 1.22403 | .51059 | | 10 | | •68530 | 58 | .34844 | .14263 | 107 | 1.22496 | .51059 | | 11 | 1.37294 | .68530 | 59 | •69171 | .20526 | 108 | 1.22662 | .51059 | | 12 | 1.37477 | •68530 | 60 | .68812 | .28526 | 109 | 1.22826 | .51059 | | | 1.37572 | .68530 | 61 | .68642 | .28526 | 110 | 1.22911 | .51059 | | 13
14 | .68789 | • 34265 | 62 | 1.37022 | .57053 | 111 | .61458 | .25529 | | 15 | .68789 | .34265 | 63 | 1.36650 | .57053 | 112 | .61458 | .25529 | | 16 | •39466 | •17133 | 64 | 1.36003 | •57053 | 113 | .16075 | .11629 | | | .34895 | •17133 | 65 | 1.36907 | •57053 | 114 | .14213 | .11629 | | 17 | •69272 | •34265 | 66 | 1.37093 | •57053 | 115 | .28215 | .23258 | | 18 | .68913 | •34265 | 67 | 1.37276 | •57053 | 116 | .28068 | .23258 | | 19 | ·68742 | •34265 | 68 | 1.37371 | •57053 | 117 | .27999 | .23258 | | 20 | 1.37222 | .68530 | 69 | .68689 | .28526 | 118 | .55890 | .46516 | | 21 | 1.37650 | .68530 | 70 | .69699 | .28526 | 119 | .55E21 | .46516 | | 22 | 1.37003 | .68530 | 71 | .39409 | .14263 | 120 | .55801 | .4651 6 | | 23 | 1.37108 | •68530 | 72 | .34844 | .14263 | 121 | .55844 | .46516 | | 24 | 1.37294 | .68530 | 73 | .69171 | •26526 | 122 | .55920 | .46516 | | 25 | 1.37477 | •66530 | 74 | .68812 . | ·28526 | 123 | .55994 | .46516 | | 26 | 1.37572 | •68530 | 75 | .68642 | .28526 | 124 | .56033 | .46516 | | 27 | .68789 | •34265 | 76 | 1.37022 | .57053 | 125 | .20018 | .23258 | | 28 | •68789 | •34265 | 77 | 1.36850 | .57053 | 126 | .28618 | .23258 | | 29 | .43557 | •15762 | 78 | 1.36803 | . 5.70 5 3 | 127 | .16075 | .11629 | | 30 | •3R512 | •15762 | 79 | 1,36907 | .57053 | 128 | .14213 | .11629 | | 31 | .76452 | .31524 | 80 | 1.37093 | .57053 | 129 | .28215 | .23258 | | 32 | .76056 | .31524 | 81 | 1.37276 | .57053 | 130 | .28068 | .23258 | | 33 | •75868 | .31524 | 82 | 1.37371 | .57053 | 131 | .27999 | .23258 | | 34 | 1.51445 | .63048 | 83 | 68689 | 28526 | 132 | .55690 | .46516 | | 35 | 1.51256 | .63048 | 84 | .68689 | .28526 | 133 | .55821 | .46516 | | 36 | 1.51204 | -63048 | 85 | .35260 | .12765 | 134 | .55001 | .46516 | | 37 | 1.51319 | .6304B | 86 | .31176 | .12765 | 135 | .55844 | .46516 | | 36 | 1.51524 | .63048 | e 7 | .61890 | 25529 | 136 | 55920 | .46516 | | 39 | 1.51727 | .63048 | 88 | .61569 | .25529 | 137 | 55994 | .46516 | | 40 | 1.51631 | •63048 | 89 | .61417 | .25529 | 138 | .56033 | .40516 | | 41 | .75919 | •31524 | 90 | | | 139 | .28018 | .23258 | | 42 | .75919 | .31524 | | 1.22598 | .51059 | 140 | .28018 | .23258 | | 43 | .43557 | .15762 | 91 | 1.22445 | .51059 | 140 | * 5 0 A T O | • 6 36 30 | | 44 | .38512 | .15762 | 92 | 1.27403 | .51059 | | | | | 45 | .76452 | •31524 | 93 | 1.22496 | .51059 | | | | | 46 | •76056 | •31524
•31524 | 94
Q5 | 1.22662 | .51059 | | | | | 70 | • 10076 | -31364 | לא | 1.22826 | -51059 | | | | # BODY PANEL CORNER POINT COORDINATES 1 AND 3 INDICATE BODY PANEL LEADING-EDGE POINTS, 2 AND 4 INDICATE TRAILING-EDGE POINTS | PANEL | х
1 | ٧ | 2, | X
2 | Y
2 | 1 2 | х
3 | Y
3 | 2 3 | X
4 | ٧, | 2,4 | |----------|--------------------|------------------|------------------|--------------------|-----------------|-------------------|----------|----------|------------------|----------|-----------------|--------------------| | | _ | _ | | | | | | | | | | | | 1 | 0.00000 | 0.00000 | 0.00000 | 2.00000 | .00000 | 48300 | 0.00000 | 0.00000 | 0.00000 | 2.00000 | .24150 | 41829 | | 2 | 0.00000 | 0.00000 | 0.00000 | 2.00000 | .24150 | 41829 | 0.00000 | 0.00000 | 0.00000 | 2.00000 | .41829 | 24150 | | 3 | 0.00000 | 0.00000 | 0.00000 | 2.00000 | .41829 | 24150 | 0.00000 | 0.00000 | 0.00000 | 2.00000 | .48300 | .00000 | | 4 | 0.00000 | 0.00000 | 0.00000 | 2.00000 | .48300 | .00000 | 0.00000 | 0.00000 | 0.00000 | 2.00000 | 41829 | .24150 | | 5 | 0.00000 | 0.00000 | 0.00000 | 2.00000 | .41829 | .24150 | 0.00000 | 0.00000 | 0.00000 | 2.00000 | •24150 | .41829 | | 6 | 0.00000 | 0.00000 | 0.00000 | 2.00000 | .24150 | .41829 | 0.00000 | 0.00000 | 0.00000 | 2.00000 | 00000 | .48300 | | 7 | 2.00000 | .00000 | 483CO | 5.00000 | .00000 | 91401 | 2.00000 | .24150 | 41829 | 5.00000 | .45701 | 79156 | | 8 | 2.00000 | .24150 | 41829 | 5.00000 | .45701 | 79156 | 2.00000 | .41629 | 24150 | 5.00000 | •79156 | 45701 | | 9 | 2.00000 | .41829 | 24150 | 5.00000 | •79156 | 45701 | 2.00000 | . 48 300 | .00000 | 5.00000 | .91401 | .00000 | | 10 | 2.00000 | .46300 | •00000 | 5.00000 | .91401 | .00000 | 2.00000 | .41829 | .24150 | 5.00000 | •79156 | •45701 | | 11 | 2.00000 | .41829 | .24150 | 5.00000 | •79156 | .45701 | 2.00000 | • 24150 | .41829 | 5.00000 | 45701 | •79156 | | 12 | 2.00000 | . 24150 | •41829 | 5.00000 | .45701 | •79156 | 2.00000 | 00000 | .48300 | 5.00000 | 00000 | .91401 | | 13 | 5.00000 | .00000 | 91401 | 8.00000 | | -1.23595 | 5.00000 | .45701 | 79156
45701 | 8.00000 | | -1.07036
61797 | | 14 | 5.00000 | 45701 | 79156 | 8.0000 0 | | -1.07036 | 5.00000 | .79156 | | 8.00000 | 1.07036 | .00000 | | 15 | 5.00000 | .79156 | 45701 | 8.00000 | 1.07036 | 61797 | 5.00000 | .91401 | .00000
.45701 | 8.00000 | 1.23595 | .61797 | | 16 | 5.00000 | .91401 | .00000 | 8.00000 | 1.23595 | .00000 | 5.00000 | •79156 | | | | | | 17 | 5.00000 | .79156
.45701 | .45701
.79156 | 8.00000
8.00000 | 1.07036 | .61797
1.07036 | 5.00000 | 00000 | .79156
.91401 | 8.00000 | .61797
06000 | 1.07036
1.23595 | | 18 | 5.0000 | | -1.23595 | | | -1.44400 | 8.00000 | | -1.07036 | | | -1.25054 | | 19 | 0.0000 | | -1.07036 | | | -1.25054 | 8.00000 | 1.07036 | | 11.00000 | 1.25054 | 72200 | | 20
21 | 00000 | 1.07036 | | 11.00000 | 1.25054 | 72200 | 2.00000 | 1.23595 | | 11.00000 | 1.44400 | •00000 | | | 000000 | 1.23595 | | 11.00000 | 1.44400 | .00000 | 8.00000 | 1.07036 | | 11.00000 | 1.25054 | .72200 | | 22
23 | 00000.8
00000.3 | 1.07036 | | 11.00000 | 1.25054 | .72200 | 8.00000 | 61797 | | 11.00000 | .72200 | 1.25054 | | 24 | 6.00000 | | 1.07036 | | 72200 | 1.25054 | 8.00000 | 00000 | | 11.00000 | 00000 | 1.44400 | | 25 | 11.00000 | | -1.44400 | | | -1.53750 | | | -1.25054 | | | -1.33151 | | 26 | 11.00000 | | -1.25054 | | | -1.33151 | | | 72200 | | 1.33151 | 76675 | | 27 | 11.00000 | 1.25054 | | 13.00000 | 1.33151 | | 11.00000 | 1.44400 | | 13.00000 | 1.53750 | •00000 | | 28 | 11.00000 | 1.44400 | | 13.00000 | 1.53750 | | 11.00000 | 1.25054 | | 13.00600 | 1.33151 | .76875 | | 29 | 11.00000 | 1.25054 | | 13.00000 | 1.33151 | | 11.00000 | .72200 | | 13.00000 | .76875 | 1.33151 | | 30 | 11.00000 | .72200 | | 13.00000 | .76875 | | 11.00000 | 00000 | | 13.00000 | 00000 | 1.53750 | | 31 | 13.00000 | | -1.53750 | | | -1.58361 | | | -1.33151 | | | -1.37145 | | 32 | 13.00000 | | -1.33151 | | | -1.37145 | | 1.33151 | | 14.32500 | 1.37145 | 79161 | | 33 | 13.00000 | 1.33151 | | 14.32500 | 1.37145 | | 13.00000 | 1.53750 | | 14.32500 | 1.56361 | .0000 | | 34 | 13.00000 | 1.53750 | | 14.32500 | 1.58361 | | 13.00000 | 1.33151 | | 14.32500 | 1.37145 | .79181 | | 35 | 13.00000 | 1.33151 | | 14.32500 | 1.37145 | | 13.00000 | .76875 | | 14.32500 | .79181 | 1.37145 | | 36 | 13.00000 | .76875 | | 14.32500 | 79181 | | 13.00000 | 00000 | | 14.32500 | 00000 | 1.58361 | | 37 | 14.32500 | | -1.58361 | | | -1.62084 | | | -1.37145 | | | -1.40369 | | 38 | 14.32500 | | -1.37145 | | | -1.40369 | | 1.37145 | | 15.73000 | 1.40369 | 81042 | | 39 | 14.32500 | 1.37145 | | 15.73000 | 1.40369 | | 14.32500 | 1.58361 | | 15.73000 | 1.62084 | .00000 | | 40 | 14.32500 | 1.58361 | | 15.73000 | 1.62084 | | 14.32500 | 1.37145 | | 15.73000 | 1.40369 | .61042 | | 41 | 14.32500 | 1.37145 | | 15.73000 | 1.40369 | | 14.32500 | .79181 | | 15.73000 | .81042 | 1.40369 | | 42 | 14.32500 | 70181 | | 15.73000 | . #1042 | | 14.32500 | | | 15.73000 | 00000 | 1.62084 | | | | | | | • • • • • • • • | | | | | | | -105007 | | | | | | | | | | **** | | | | 1 45454 | |-----|----------|---------|----------|----------|---------|------------------|----------|---------|----------|----------|---------|----------| | 43 | 15.73000 | | -1.62084 | | | -1.64540 | | | -1.40369 | | | -1.42496 | | 44 | 15.73000 | | -1.40369 | | | -1.42496 | | 1.40369 | | 17.16000 | 1.42496 | 82270 | | 45 | 15.73000 | 1.40369 | | 17.16000 | 1.42496 | | 15.73000 | 1.62084 | | 17.16000 | 1.64540 | .00000 | | 46 | 15.73000 | 1.62084 | | 17.16000 | 1.64540 | | 15.73000 | 1.40369 | | 17.16000 | 1.42496 | .82270 | | 47 | 15.73000 | 1.40369 | .81042 | 17.16000 | 1.42496 | .82270 | 15.73000 | .81042 | 1.40369 | 17.16000 | .82270 | 1.42496 | | 48 | 15.73000 | .81042 | 1.40369 | 17.16000 | .82270 | 1.42496 | 15.73000 | 00000 | 1.62084 | 17.16000 | 00000 | 1.64540 | | 49 | 17.1:000 | .00000 | -1.64540 | 18.59000 | .00000 | -1.66154 | 17.16000 | .82270 | -1.42496 |
18.59000 | .83077 | -1.43693 | | 50 | 17.16000 | .82270 | -1.42496 | 18.59000 | .83077 | -1.43893 | 17.16000 | 1.42496 | 82270 | 18.59000 | 1.43893 | 83077 | | 51 | 17.16000 | 1.42496 | 82270 | 18.59000 | 1.43893 | 83077 | 17.16000 | 1.64540 | .00000 | 18.59000 | 1.66154 | .00000 | | 52 | 17.16000 | 1.64540 | .00000 | 18.59000 | 1.66154 | .00000 | 17.16000 | 1.42496 | .82270 | 18.59000 | 1.43893 | .83077 | | 53 | 17.16000 | 1.42496 | .82270 | 18.59000 | 1.43893 | .83077 | 17.16000 | .62270 | 1.42496 | 18,59000 | .83077 | 1.43693 | | 54 | 17.16000 | .82270 | 1.42496 | 18.59000 | .63077 | 1.43093 | 17.16000 | 00000 | 1.64540 | 18.59000 | 00000 | 1.66154 | | 55 | 18.59000 | _ | -1.66154 | | | -1.66985 | | .83077 | -1.43893 | 20.02000 | .83493 | -1.44613 | | 56 | 18.59000 | | -1.43293 | | | -1.44613 | | 1.43893 | | 20.02000 | 1.44613 | 83493 | | 57 | 18.59000 | 1.43893 | | 20.02000 | 1.44613 | | 18.59000 | 1.66154 | | 20.02000 | 1.66965 | .00000 | | 58 | 18.59000 | 1.66154 | | 20.02000 | 1.66985 | | 18.59600 | 1.43893 | | 20.02000 | 1.44613 | .63493 | | 59 | 18.59000 | 1.43693 | | 20.02000 | 1.44613 | | 18.59000 | .83077 | | 20.02000 | .83493 | 1.44613 | | 60 | 18.59000 | .83077 | | 20.02000 | .83493 | | 18.59000 | 00000 | | 20.02000 | 00000 | 1.66985 | | | | | -1.66985 | | | -1.65931 | | | -1.44613 | | | -1.43701 | | 61 | 20.02000 | | | | | | | | | | | | | 62 | 20.02000 | | -1.44613 | | | -1.43701 | | 1.44613 | | 21.42500 | 1.43701 | 82966 | | 63 | 20.02000 | 1.44613 | | 21.42500 | 1.43701 | | 20.02000 | 1.66985 | | 21.42500 | 1.65931 | .00000 | | 64 | 20.02000 | 1.66985 | | 21.42500 | 1.65931 | | 20.02000 | 1.44613 | | 21.42500 | | •65966 | | 65 | 20.02000 | 1.44613 | | 21.42500 | 1.43701 | | 20.02000 | .83493 | | 21.42500 | .82966 | 1.43701 | | 66 | 20.02000 | . 83493 | | 21.42500 | .82966 | | 20.02000 | 00000 | | 21.42500 | 00000 | 1.65931 | | 67 | 21.42500 | | -1.65931 | | | -1.63250 | | | -1.43701 | | | -1.41379 | | £ 8 | 21.42500 | • 62966 | -1.43701 | 23.00000 | .81625 | -1.41379 | | 1.43701 | 82966 | 23.00000 | 1.41379 | 81625 | | 69 | 21,42500 | 1.43701 | 82966 | 23.00000 | 1.41379 | | 21.42500 | 1.65931 | .00000 | 23.00000 | 1.63250 | •00000 | | 70 | 21.42500 | 1.65931 | .00000 | 23.00000 | 1.63250 | .00000 | 21.42500 | 1.43701 | •82966 | 23.00000 | 1.41379 | .81625 | | 71 | 21.42500 | 1.43701 | .82966 | 23.00000 | 1.41379 | .81625 | 21,42500 | .82966 | 1.43701 | 23.00000 | .81625 | 1.41379 | | 72 | 21.42500 | .82966 | 1.43701 | 23.00000 | .81625 | 1.41379 | 21.42500 | 00000 | 1.65931 | 23.00000 | 00000 | 1.63250 | | 73 | 23.00000 | .00000 | -1.63250 | 25.00000 | .00000 | -1.57500 | 23.00000 | .81625 | -1.41379 | 25.00000 | .78750 | -1.36399 | | 74 | 23.00000 | .81625 | -1.41379 | 25.00000 | .78750 | -1,36399 | 23.00000 | 1.41379 | 81625 | 25.00000 | 1.36399 | 76750 | | 75 | 23.00000 | 1,41379 | 81625 | 25.00000 | 1.36399 | 78750 | 23.00000 | 1.63250 | .00000 | 25.00000 | 1.57500 | .00000 | | 76 | 23.00000 | 1.63250 | .00000 | 25.00000 | 1.57500 | .00000 | 23.00000 | 1.41379 | .01625 | 25.00000 | 1.36399 | .76750 | | 77 | 23.00000 | 1.41379 | .81625 | 25.00000 | 1.36399 | .78750 | 23.00000 | . 81625 | | 25.00000 | .76750 | 1.36399 | | 78 | 23.00000 | 81625 | 1.41379 | 25.00000 | 78750 | 1.36399 | 23.00000 | 00000 | | 25.00000 | 00000 | 1.57500 | | 79 | 25.00000 | .00000 | -1.57500 | | .00000 | -1.42800 | 25.00000 | .7h750 | -1.36399 | | | -1.23669 | | 80 | 25.00000 | | -1.36399 | | | | 25.00000 | 1.36399 | | 28.00000 | 1.23669 | 71400 | | 81 | 25.00000 | 1.36399 | | 28.00000 | 1.23669 | | 25.00000 | 1.57500 | | 28.00000 | 1.42800 | 00000 | | 82 | 25.00000 | 1.57500 | | 28.00000 | 1.42800 | | 25.00000 | 1.36399 | | 28.00000 | 1.23669 | .71400 | | 83 | 25.00000 | 1.36399 | | 28.00000 | 1.23669 | | 25.00000 | 78750 | | 28.00000 | .71400 | | | 84 | 25.00000 | 78750 | | 28.00000 | .71400 | | 25.00000 | 00000 | | 28.00000 | 00000 | | | 85 | 28.00000 | | -1.42600 | | | | 28.00000 | | | | | 1.42800 | | 86 | 28.00000 | | -1.23669 | | .00000 | | | | -1.23669 | | •45300 | 78461 | | 87 | | | | | | | 28.00000 | 1.23669 | | 33.00000 | .78461 | 45300 | | | 28.00000 | 1.23669 | | 33.00000 | .78461 | | 28.00000 | 1.42800 | | 33.00000 | 90599 | .00000 | | 88 | 28.00000 | 1.42800 | | 33.00000 | .90599 | | 28.00000 | 1.23669 | | 33.00000 | .78461 | •45300 | | 89 | 27.00000 | 1.23669 | | 33.00000 | • 78461 | | 28.00000 | •71400 | | 33.00600 | •45300 | .78461 | | 90 | 28.00000 | .71400 | | 33.00000 | .45300 | | 28.00000 | 00000 | | 33.00000 | 00000 | •90599 | | 91 | 33-00000 | .00000 | 80539 | 36-00000 | •66666 | → . ₽0000 | 23-00000 | . 45300 | 78461 | 34-00000 | . 40000 | 69782 | | | | | | | | | | | | | | | ``` 33.00000 .45300 -.78461 36.00000 .40000 -.69282 33.00000 .78461 -.45300 36.00000 .69282 -.40000 93 -.45300 36.00000 -.40000 33.00000 .00000 35.00000 33.00000 .78461 .69282 .90599 .80000 .00000 94 33.00000 .90599 .00000 36.00000 .80000 .00000 33.00000 .45300 36.00000 .69282 .40000 .78461 95 33.00000 .78461 .45300 36.00000 .69282 .40000 33.00000 .45300 .78461 36.00000 .40000 .69282 96 33.00000 . 45 300 .78461 36.00000 .40000 .69282 33.00000 -.00000 .90599 36.00000 -.00000 .80000 97 36.00000 .00000 -.80000 38.00000 .00000 -.80000 36.00000 .40000 -.69282 38.00000 .40000 -.69282 98 36.00000 -.69282 38.00000 .40000 -.69282 36.00000 -.400C0 38.00000 .69282 -.40000 .40000 •69282 .00000 38.00000 .40000 38.00000 -.40000 38.C0000 99 36.00000 .69282 -.40000 36.00000 .80000 .00000 .69282 .80000 36.00000 .00000 38.00000 .80000 .00000 36.00GCO .69282 .69282 .40000 100 .60000 101 36.00000 .40000 38.00000 .69282 .40000 36.00000 .69282 38.00000 .40000 .69282 .69282 .40000 36.00000 .40000 .69282 38.00000 .40000 .69282 36.00000 -. COOOO .80000 38.00000 -.00000 .80000 102 ``` | BODY F | ANEL CENTROID | POINT COORS | DINATES | 44 | 16.44679 | 1.11546 | -1.11546 | | | | | |--------|---------------|-------------|----------------|----|----------|----------------|---------------|----------|----------|--------|---------------| | | | | | 45 | 16.44679 | 1.52375 | -,40829 | 93
94 | 34.46893 | .79688 | 21352 | | POINT | X | Y | Z | 46 | 16.44679 | 1.52375 | .40829 | | 34.46893 | .79688 | .21352 | | | CP | CP | CP | 47 | 16.44679 | 1.11546 | 1.11546 | 95 | 34.46893 | •58336 | •58336 | | | | | | | | | 1.52375 | 96 | 34,46893 | .21352 | •79688 | | | | | | 48 | 16.44679 | .40829 | | 97 | 37.00000 | .20000 | 74641 | | 1 | 1.33333 | .08050 | 30043 | 49 | 17.87616 | .41337 | -1.54272 | 98 | 37.C0000 | .54641 | 54641 | | ž | 1.33333 | .21993 | 21993 | 50 | 17.07616 | 1.12935 | -1.12935 | 99 | 37.00000 | .74641 | 20C0 0 | | 3 | 1.33333 | .30043 | 08050 | 51 | 17.87616 | 1.54272 | 41337 | 100 | 37.00000 | .74641 | .20000 | | 4 | 1.33333 | .30043 | .08050 | 52 | 17.87616 | 1.54272 | .41337 | 101 | 37.00000 | .54641 | .54641 | | 3 | 1.33333 | .21993 | .21993 | 53 | 17.87616 | 1.12935 | 1.12935 | 102 | 37.00000 | .20000 | •74641 | | 6 | 1.33333 | .08050 | .30043 | 54 | 17.87616 | .41337 | 1.54272 | | | | | | 7 | 3.65426 | .18017 | 67239 | 55 | 19.30559 | .41642 | -1.55412 | | | | | | é | 3.65426 | .49223 | 49223 | 56 | 19.30559 | 1.13769 | -1.13769 | | | | | | ğ | 3.65426 | .67239 | 18017 | 57 | 19.30559 | 1.55412 | 41642 | | | | | | 10 | 3.65426 | •67239 | .18017 | 58 | 19.30559 | 1.55412 | .41642 | | | | | | | | | | 59 | 19.30559 | 1.13769 | 1.13769 | | | | | | 11 | 3.65426 | .49223 | .49223 | 60 | 19.30559 | .41642 | 1.55412 | | | | | | 12 | 3.65426 | .16017 | .67239 | 61 | 20.72176 | .41615 | -1.55308 | | | | | | 13 | 6.57487 | .27075 | -1.01047 | 62 | 20.72176 | 1.13693 | -1.13693 | | | | | | 14 | 6.57487 | .73971 | 73971 | 63 | 20.72176 | 1.55308 | 41615 | | | | • | | 15 | 6.57487 | 1.01047 | 27075 | 64 | 20.72176 | 1.55308 | .41615 | | | | | | 16 | 6.57487 | 1.01047 | .27075 | 65 | 20.72176 | 1.13693 | 1.13693 | | | | | | 17 | 6,57487 | •73971 | .7 3971 | 66 | 20.72176 | .41615 | 1.55308 | | | | | | 10 | 6.57487 | .27075 | 1.01047 | 67 | 22.21036 | 41149 | -1.53568 | | | | | | 19 | 9.53882 | •33567 | -1.25272 | 68 | 22.21036 | 1.12426 | -1.12420 | | | | | | 20 | 9.53882 | .91706 | 91706 | 69 | 22.21036 | 1.53568 | -,41149 | | | | | | 21 | 9.53882 | 1.25272 | 33567 | 70 | 22.21036 | 1.53568 | .41149 | | | | | | 22 | 9.53682 | 1.25272 | .33567 | 71 | 22.21036 | 1.12420 | 1.12420 | | | | | | 23 | 9.53882 | .91706 | .91706 | | | .41149 | 1.53568 | | | | | | 24 | 9.53882 | .33567 | 1.25272 | 72 | 22.21036 | | -1.49648 | | | | | | 25 | 12.01045 | .37281 | -1.39134 | 73 | 23.99402 | •40098 | | | | | | | 26 | 12.01045 | 1.01854 | -1.01854 | 74 | 23.99402 | 1.09550 | -1.09550 | | | | | | 27 | 12.01045 | 1.39134 | 37281 | 75 | 23.99402 | 1.49648 | 40098 | | | | | | 28 | 12.01045 | 1.39134 | .37281 | 76 | 23.09402 | 1.49648 | .40098 | | | | | | 29 | 12.01045 | 1.01854 | 1.01854 | 77 | 23.99402 | 1.09550 | 1.09550 | | | | | | 30 | 12.01045 | .37281 | 1.39134 | 78 | 23.99402 | .40098 | 1.49648 | | | | | | 31 | 13.66576 | .39017 | -1.45612 | 79 | 26.47552 | .37567 | -1.40204 | | | | | | 32 | 13.66576 | 1.06596 | -1.06596 | 80 | 26.47552 | 1.02636 | -1.02636 | | | | | | 33 | 13.66576 | 1.45612 | 39017 | 81 | 26.47552 | 1.40204 | 3756 7 | | | | | | 34 | 13.66576 | 1.45612 | .39017 | 62 | 26.47552 | 1.40204 | .37567 | | | | | | 35 | 13.66576 | 1.06596 | 1.06596 | 83 | 26.47552 | 1.02636 | 1.02636 | | | | | | | | | | 84 | 26.47552 | •3756 7 | 1.40204 | | | | | | 36 | 13.66576 | .39017 | 1.45612 | 85 | 30.31362 | .29661 | -1.10698 | | | | | | 37 | 15.03022 | -40057 | -1.49497 | 69 | 30.31362 | .81036 | 81C36 | | | | | | 38 | 15.03022 | 1.09439 | -1.09439 | 87 | 30.31362 | 1.10698 | 29661 | | | | | | 39 | 15.03022 | 1.49497 | 40057 | 88 | 30.31362 | 1.10698 | .29661 | | | | | | 40 | 15.03022 | 1.49497 | .40057 | 89 | 30.31362 | .81036 | .81036 | | | | | | 41 | 15.03022 | 1.09439 | 1.09439 | 90 | 30.31362 | .29661 | 1.10698 | | | | | | 42 | 15.03022 | .40057 | 1.49497 | 91 | 34.46893 | .21352 | 79688 | | | | | | 43 | 16.44679 |
-40829 | -1.52375 | 07 | 34.46893 | 46234 | - 58336 | | | | | | | | | | | | | | | | | | | BODY | PAREL AREAS | AND INCLINA | TION ANGLE | s | | 44 | 1.20904 | .01658 | -2.35619 | .95023 -135.00000 | |----------|-------------|----------------|------------|----------|-------------|----|--------------------|--------|----------|--| | | | | | | T115 T A | 45 | 1.20904 | .01658 | -1.63260 | •95023 -105 •0000 | | PANEL | APEA | DELTA | THETA | DELTA | THETA | 46 | 1.20904 | .01658 | -1.30900 | •95023 - 75.00000 | | | | RAD | RAD | DEG | DEG | 47 | 1.20904 | .01658 | 78540 | •950Z3 -45.0000 0 | | | | | | | | 48 | 1.20904 | .01658 | 26180 | •95023 -15.00000 | | | | | | | | 49 | 1.22401 | .01090 | -2.87979 | •62467 -165.C0000 | | 1 | .25673 | .22917 | -2.87979 | | -165.00000 | 50 | 1.22401 | .01090 | -2.35619 | .62467 -135.00000 | | 2 | .25673 | .22917 | -2.35619 | | -135.00000 | 51 | 1.22401 | .01090 | -1.83260 | .62467 -105.C0000 | | 3 | .25673 | .22917 | -1.83260 | | -105.00000 | 52 | 1.22401 | .01090 | -1.30900 | .62467 -75.00000 | | 4 | .25673 | •2291 7 | -1.30900 | 13.13065 | | 53 | 1.22401 | .01090 | 78540 | .62467 -45.00000 | | 5 | .25673 | •22917 | 78540 | 13.13065 | | 54 | 1.22401 | .01090 | 26180 | .62467 -15.C0000 | | 6 | .25673 | .22917 | 26180 | 13.13065 | | 55 | 1.23300 | .00561 | -2.87979 | .32171 -165.00000 | | 7 | 1.09512 | .13789 | -2.87979 | | -165.00000 | 56 | 1.23300 | .00561 | -2.35619 | .32171 -135.00000 | | 8 | 1.09512 | .13789 | -2.35619 | 7.90076 | -135.00000 | 57 | 1.23300 | .00561 | -1.83260 | .32171 -105.C0000 | | 9 | 1.09512 | .13769 | -1.83260 | 7.90076 | -105.00000 | 58 | 1.23300 | .00561 | -1.30900 | .32171 -75.00000 | | 10 | 1.09512 | .13789 | -1.30900 | 7.90076 | -75.00000 | 59 | 1.23300 | .00561 | 78540 | .32171 -45.00000 | | 11 | 1.09512 | .13789 | 78540 | 7.90076 | -45.00000 | 60 | 1.23300 | .00561 | 26180 | •32171 -15.COOOO | | 12 | 1.09512 | .13789 | 26180 | 7.90076 | -15.00000 | 61 | 1.21065 | 00724 | -2.87979 | 41510 -165.00000 | | 13 | 1.67830 | .10329 | -2.87979 | 5.91790 | -165.00000 | 62 | 1.21065 | 00724 | -2.35619 | 41510 -135.C0000 | | 14 | 1.67830 | .10329 | -2.35619 | 5.91790 | -135.00000 | 63 | 1.21065 | 00724 | -1.03260 | 41510 -105.G0000 | | 15 | 1.67830 | .10329 | -1.83260 | 5.91790 | -105.00000 | 64 | 1.21065 | 00724 | -1.30900 | 41510 -75.00000 | | 16 | 1.67630 | .10329 | -1.30900 | 5.91790 | -75.00000 | 65 | 1.21065 | 00724 | 78540 | 41510 -45.C0000 | | 17 | 1.67830 | .10329 | 78540 | 5.91790 | -45.00000 | 66 | 1.21065 | 00724 | 26180 | 41510 -15.00000 | | 10 | 1.67130 | 10329 | 26160 | 5.91790 | | 67 | 1.34206 | 01644 | -2.87979 | 94212 -165.00000 | | 19 | 2.08553 | .06689 | -2.87979 | 3.83237 | -165.00000 | 68 | 1.34206 | 01644 | -2.35619 | 94212 -135.60000 | | 20 | 2.08553 | .06689 | -2.35619 | | -135.00000 | 69 | 1.34206 | 01644 | -1.83260 | 94212 -105.00000 | | 21 | 2.08553 | .06689 | -1.83260 | | -105.00000 | 70 | 1.34206 | 01644 | -1.30900 | 94212 -75.00000 | | 22 | 2.08553 | .06689 | -1.30900 | 3.83237 | | 71 | 1.34206 | 01644 | 78540 | 94212 -45.00000 | | 23 | 2.08553 | .06689 | 78540 | 3.83237 | | 72 | 1.34206 | 01644 | 26180 | 94212 -15.00000 | | 24 | 2.08553 | .06689 | 26180 | 3.83237 | | 73 | 1.66096 | 02776 | -2.87979 | -1.59072 -165.00000 | | 25 | 1.54491 | .04513 | -2.87979 | | -165.00000 | 74 | 1.66096 | 02776 | -2.35619 | -1.59072 -135.00000 | | 26 | 1.54491 | .04513 | -2.35619 | | -135.00000 | 75 | 1.66096 | 02776 | -1.83260 | -1.59072 -105.00000 | | 27 | 1.54491 | .04513 | -1.83260 | | -105.00000 | 76 | 1.66096 | 02776 | -1.36900 | -1.59072 -75.0000 | | 28 | 1.54491 | .04513 | -1.30900 | 2.56556 | | 77 | 1.66096 | 02776 | 78540 | -1.59072 -45.0000 | | 29 | 1.54491 | •04513 | 78540 | 2.56556 | | 78 | 1.66096 | 02776 | 26160 | -1.59072 -15.00000 | | 30 | 1.54491 | .04513 | 26180 | 2:58556 | | 79 | 2.33431 | 04729 | -2.87979 | -2.70976 -165.C0000 | | 31 | 1.07094 | .03360 | -2.87979 | | -165.00000 | 80 | 2.33431 | 04729 | -2.35619 | -2.70976 -135.00000 | | 32 | 1.07094 | .03360 | -2.35619 | | -135.00000 | 81 | 2.33431 | 04729 | -1.83260 | -2.70976 -105.00000
-2.70976 -105.00000 | | 33 | 1.07094 | .03360 | -1.83260 | | -105,00000 | 82 | 2.33431 | 04729 | -1.30900 | -2.76976 -75.0GGOO | | 34 | 1.67094 | .03360 | -1.30900 | 1.92526 | | 83 | 2.33431 | 04729 | 78540 | -2.70976 -75.00000
-2.70976 -45.00000 | | 35 | 1.07094 | .03360 | 78540 | 1.92526 | | 84 | 2.33431 | 04729 | 26160 | -2.70976 -15.00000 | | 36 | 1.07094 | .03360 | 26190 | 1.92526 | | 85 | 3.03573 | 10050 | | | | | | .02559 | -2.87979 | | -165.00000 | 86 | 3.03573 | | -2.87979 | -5.75847 -165.00000 | | 37 | 1.16565 | .02559 | -2.35619 | | -135.00000 | 87 | 3.03573 | 10050 | -2.35619 | -5.75847 -135.00000 | | 38 | 1.16565 | .02559 | -1.83260 | | -105.00000 | 88 | | 10050 | -1.83260 | -5.75847 -105.00000 | | 39 | 1.16565 | | -1.30900 | 1.46625 | | 89 | 3.03573 | 10050 | -1.30900 | -5.75847 -75.00000 | | 40 | 1.16565 | .02559 | 78540 | 1.46625 | | 90 | 3.03573
2.03573 | 10050 | 78540 | -5.75847 -45.00000 | | 41 | 1.16565 | .02559 | 26180 | 1.46625 | | 91 | 3.03573 | 10050 | 26180 | -5.75847 -15.00000 | | 42
43 | 1.16565 | .02559 | -2-87979 | | -15,00000 | | 1.32540 | 03412 | -2.87979 | -1.95468 -165.00000 | | 44 | 1.20904 | -01658 | -//4/4 | • 45023 | -183-mmilli | 92 | 1.32540 | 03412 | -2.35619 | -1.95468 -135.00000 | ı ``` 93 1.32540 -.03412 -1.83260 -1.95468 -105.00000 94 1.32540 -.03412 -1.30900 -1.95468 -75.00000 95 1.32540 -.03412 -.78540 -1.95468 -45.00000 96 1.32540 -.03412 -.26180 -1.95468 -15.00000 97 . 62622 0.0000 -2.87979 0.00000 -165.00000 98 . 62822 0.00000 -2.35619 0.00000 -135.00000 99 -1.83260 0.00000 -105.00000 . 2 2 2 2 2 0.00000 0.00000 -1.30900 0.00000 -75.00000 100 .62622 101 0.00000 -.78540 0.00000 -45.00000 .62822 102 . 82622 0.0000 -.26180 0.00000 -15.00000 ``` PARTITION = 1 TIME = 11.93800 NWING= 140 NBODY= 102 NCPT= 140 NSEG= 1 NBROW(N),N=1, 2 48 54 NWPOW(N),N=1, 5 20 28 28 28 28 NRCW(N),N=1, 1 14 NCOL(N),N=1, 1 5 INFLUENCE OF BODY ON BODY PARTITION = 2 TIME = 44.42200 INFLUENCE OF WING ON BODY PARTITION = 3 TIME' = 505.35600 INFLUENCE OF BODY ON WING PARTITION = 4 TIME = 550.42500 INFLUENCE OF WING ON WING NWING= 140 NBCOY= 102 NCPT= 140 NSEG= 1 NBBLOK= 2 NWBLOK= 5 VELCHP, TIME =1181.72200 BEGIN A NEW CASE CONTROLLED SUCCESSIVE OVERRELAXATION METHOD ALF2- 1.10 ALF1. .90 | ITRATE, | TIME | •1189 | .064CO | |---------|------|-------|--------| | | | | | | ITRATE, TIM | E •1189.06 | 400 | | | | | | | | |-------------|------------|--------|----------|--------|----------|---------|------------|---------|--------| | ITERATION N | | | | | | | | | | | Ge(N),N+1, | 102 | | | | | | | | | | .38550 | •34553 | .27631 | .19639 | •12717 | .08720 | .29422 | .25420 | .18487 | .10483 | | .03550 | 00452 | .25973 | .21996 | .15108 | .07154 | .00266 | 03711 | .21931 | .17971 | | •11112 | .03192 | 03667 | 07627 | •19427 | •15498 | .08695 | .00839 | 05965 | 09893 | | .18040 | .14157 | .07431 | 00335 | 07061 | 10944 | .16971 | •13160 | .06559 | 01063 | | 07663 | 11474 | .15640 | .11931 | .05507 | 01911 | 08336 | 12045 | ·1550B | .11787 | | .05343 | 02099 | 08543 | 12264 | •15204 | .11381 | .04759 | 02887 | 09509 | 13332 | | .13754 | .09862 | .03121 | 04664 | 11405 | 15298 | .12947 | .09017 | .62210 | 05649 | | 12456 | 16365 | .11854 | .07903 | .01060 | 06842 | 13685 | 17636 | .09859 | .05894 | | 00972 | 08901 | 15767 | 19731 | .03998 | 00002 | 06931 | 14931 | 21860 | 25860 | | .11655 | .07798 | .00772 | 07341 | 14367 | 18423 | .14793 | .10905 | .04170 | 03607 | | 10342 | 14230 | | | | | | | | | | G₩(N),N=1, | | | | | | | | | | | .41062 | .11447 | .11185 | .0 82 26 | .06330 | 04273 | .01854 | 00832 | 03988 | 06082 | | 07313 | 07518 | 071 81 | 06854 | .20704 | .09509 | .05732 | .03652 | .02586 | .01848 | | •00974 | .00498 | .00202 | .00022 | 00063 | 00076 | 00047 | 00026 | .41029 | .11404 | | .11138 | .08168 | .06256 | •04197 | .01818 | 00822 | 03944 | 06611 | 07232 | 07444 | | 07122 | 06806 | .23029 | .10686 | .06519 | .04273 | .03146 | .02372 | .01401 | .00825 | | .00460 | .00229 | .00100 | .00039 | .00016 | .00011 | .41005 | .11390 | .11125 | .08155 | | -0£241 | .04181 | .01809 | 00821 | 03937 | 05996 | 07213 | 07424 | 07104 | 06791 | | .23994 | .11173 | .06843 | .04527 | .03373 | .02585 | .01589 | .00981 | .00585 | .00327 | | .001 74 | .00089 | •00044 | .00028 | .40986 | .11379 | -11115 | .C8147 | .06234 | .04172 | | .01002 | 00822 | 03935 | 05989 | 07200 | 07409 | 07090 | 06778 | .25216 | .11787 | | •07250 | .04842 | .03651 | .02843 | .01622 | .01182 | .00750 | .00457 | .00272 | .00156 | | .00082 | .00051 | .41228 | .11510 | .11248 | .08292 | .06401 | .04327 | .01E73 | 00841 | | 04012 | 0t114 | 07345 | 07543 | 07198 | 06865 | • 19226 | .08763 | .05235 | .03263 | | .02243 | .0 15 45 | .00756 | .00342 | .00084 | 00073 | 00139 | 00130 | CC076 | 00044 | | ITPATE, TIM | E -1189.34 | 800 | | | | | | | | | ITERATION N | | | | | | | | | | | GE(N),N=1, | | | | | | | | | | | •3 F665 | • 3 46 38 | .27663 | .19614 | .12649 | .08627 | .29572 | .25529 | .18526 | .10446 | | .03455 | 00611 | .26196 | .22159 | •15163 | .07093 | .00109 | 03972 | •22291 | .18241 | | •11204 | .03076 | 04033 | 08131 | .199C3 | .15923 | .08895 | .00621 | 06770 | 11042 | | .18074 | .14596 | .08265 | 00626 | 0 6895 | 13485 | .16201 | .13693 | .20607 | 03222 | | 11195 | 15719 | .15346 | •144 84 | •32023 | 17667 | 12832 | 16765 | .17223 | .16821 | | .32972 | 26553 | 14213 | 16743 | •19276 | •1 80 96 | .25789 | - +2 84 97 | 14550 | 15779 | | .10137 | .17087 | +10141 | 20215 | 16574 | 14885 | 18132 | A00AE. | - 2025A | 29311 | | **15114 ***.02463 **.02310 **.22180 **.01625 **.07007 **.02222 **.26253 **.39056 **.09725 **.09725 **.01654 **.06677 **.13079 **.22291 **.225253 **.19155 **.09265 **.09722 **.01654 **.0611 **.07007 **.0221 **.02265 **.09722 **.02161 **.00171 **.00171 **.00171 **.00171 **.00171 **.00171 **.00171 **.00171 **.00171
**.00171 **.0 | 18535 | 18561 | .16808 | .14959 | .21376 | 28964 | 20524 | 20983 | . 149 04 | -13483 | |--|----------------|------------|--------|---------|------------------|---------|--------|--------|----------|--------| | | .15414 | 29483 | 23310 | 24180 | .10425 | .07057 | .02222 | 26245 | 30458 | 32129 | | Color | | | .06477 | 13079 | 2 2991 | 26324 | .22553 | •19155 | .09265 | 08722 | | | | | | | | | | | | | | 07517077050737107054 .37140 .37556 .10945 .07498 .05779 .04615 .03134 .02111 .01333 .00825 .003044 .00205 .00111 .00070 .41630 .11555 .11319 .08327 .06401 .04319 .0189900814004080617107405076000724406492 .42166 .19972 .12455 .08546 .06526 .05327 .03599 .02573 .01933 .01357 .00926 .00597 .00336 .00212 .42066 .11687 .11647 .00422 .06473 .01939 .01933 .01357 .00926 .00597 .00336 .00212 .42066 .11687 .11647 .0719900676 .06402 .06417 .0719900677 .06138 .00737075410719900676 .46108 .21268 .13685 .00442 .07349 .05974 .04224 .03109 .02291 .01640 .01138 .00733 .00420 .00225 .42064 .11695 .11449 .04222 .06473 .04357 .01728 .0079103391 .0637707278 .05974 .04224 .03109 .02291 .01640 .01138 .00733 .00420 .00225 .42064 .11695 .11449 .04222 .06473 .04357 .01728 .00791033910607707278 .03588 .03200 .02230 .01799 .01477 .00550 .02230 .00349 .00216 .42107 .11718 .11440 .06513 .06630 .04595 .02188 .00349 .00216 .42107 .11718 .11440 .06513 .06630 .04595 .02188 .00588 .03033 .01932 .01237 .00568 .00244 .0004700020 .00020 | | | | | | | | | | | | .03134 .02111 .01363 .00825 .00364 .00205 .00111 .00070 .41630 .11555 .11519 .08327 .06461 .04319 .01809 .00814 .00618 .00617 .07766 .06760 .0676 .07764 .0642 .42166 .19972 .12455 .08546 .06626 .05327 .03699 .02673 .01933 .01337 .00926 .00579 .00336 .00212 .42066 .11687 .11445 .08422 .06475 .04370 .01729 .00799 .04027 .00138 .07357 .07541 .07199 .00876 .40168 .21878 .13655 .09442 .07369 .05974 .00244 .03199 .02291 .01640 .01138 .00743 .00420 .00225 .42044 .11657 .11449 .08422 .06473 .04370 .01728 .00942 .07369 .05974 .00224 .03199 .02291 .01640 .01138 .00743 .00420 .00225 .42044 .11657 .11449 .08422 .06473 .04367 .01728 .00741 .00972 .00573 .00574 .00788 .00791 .03911 .00972 .00788 .00788 .00741 .00972 .00573 .00588 .00741 .00972 .00573 .00349 .00216 .42107 .11716 .11440 .08513 .06630 .00595 .02188 .00588 .00823 .05058 .03013 .01932 .01237 .00568 .00244 .00047 .00050 .11878 .00588 .03013 .01932 .01237 .00568 .00244 .00047 .00050 .11878 .00588 .02623 .05058 .03013 .01932 .01237 .00568 .00244 .00047 .00020 .00020 .11781 .00593 .00983 .00984 .00047 .00020 .000 | | | | | | | | | | | | 11319 | | | | | | | | | | | | 0726406442 .42166 .19972 .12455 .008546 .00626 .05327 .03699 .02673 .01931 .01357 .00926 .00977 .00336 .0012 .42066 .11687 .1145 .008422 .06475 .04370 .01929007990402700138 .07357075410719904676 .46168 .21678 .13685 .09442 .07369 .095974 .04224 .03109 .02291 .01640 .01138 .00743 .00420 .00265 .42044 .11695 .11449 .08842 .06473 .04367 .0192800791039910607707278074580712206803 .49102 .23312 .14572 .10049 .07883 .06337 .04436 .03200 .02290 .01579 .01047 .00650 .0349 .00216 .42107 .11716 .111400 .06513 .06630 .04595 .0218800566 .06823 .05058 .03013 .01932 .01237 .00568 .00244 .000470602400020 .06823 .05058 .03013 .01932 .01237 .00568 .00244 .000470602400020 .1TRAIE, TIPE *1190.76100 TIPATE, TIPE *1190.76100 TIPATE, TIPE *1190.76100 TIPATE, TIPE *1190.76200 .226338 .15230 .00138001180010004205 .22711 .18550 .11322 .029440042406827 .20681 .15506 .09115 .0034907299 .11730, .1331800766 .26439 .22338 .15230 .0018800115 .0034907299 .11730, .13931 .15678 .00724011200976914456 .17469 .15647 .2645710240 .1273516792 .16929 .17818 .506763766615762 .16901 .19598 .21578 .2561928313 .21556 .23167 .4616 .25738 .22905 .25556 .22618 .15509 .22711 .16551 .22528 .23903 .45398 .55599 .23556 .23068 .23061 .15606 .09124 .00047 .50685 .15651 .15650 .09124 .00047 .00047 .26457 .10240 .12735 .16792 .21578 .25559 .25556 .22618 .15506 .23167 .46816 .55322 .25649 .25813 .21556 .23167 .46816 .55322 .25649 .25813 .25569 .23267 .232567
.232567 .232 | .06475 .04370 .0192900799040270013807357075410719900270 .01640 .01138 .00743 .00426 .00345 .09442 .07369 .09742 .00597 .1149 .00424 .00139 .02291 .01640 .01138 .00743 .00420 .00265 .42064 .11695 .11449 .00422 .006473 .04367 .0192800791039910050707278074580712200803 .49102 .23312 .14572 .10049 .07833 .06337 .04436 .03200 .02290 .01579 .01047 .00050 .00349 .00216 .42107 .11716 .111400 .00513 .00630 .04595 .0218800588 .00342 .0059907279077910719100667 .49222 .23105 .14210 .009363 .06823 .05058 .03013 .01932 .01237 .00568 .00244 .000470002400020 .00823 .05058 .03013 .01932 .01237 .00568 .00244 .000470002400020 .00824 .00828 .0082 | | | | | | | | | | | | . 16108 . 21878 . 13665 . 09442 . 07369 . 0.5974 . 04224 . 03109 . 02291 . 01640 . 01138 . C0743 . 00420 . 00265 . 42064 . 11695 . 11449 . 08422 . 06473 . 04367 . 01928 . 00791039910607707278074580712206803 . 49102 . 23312 . 14572 . 10049 . 07833 . 06337 . 04436 . 03200 . 02290 . 01579 . 01047 . 00850 . 00349 . 00216 . 42107 . 11716 . 11400 . 08513 . 06630 . 04595 . 0218800568038210596907279075160719106667 . 49222 . 23105 . 14210 . 09363 . 06823 . 05058 . 03013 . 01932 . 01237 . 00568 . 00244 . 000470602400020 | | | | | | | | | | | | .01138 | | | | | | | | | | | | .0192800791039910607707278074580712206803 .49102 .23312 .14572 .10049 .07833 .06337 .04436 .03200 .02290 .01579 .01047 .00650 .00349 .00216 .42107 .11716 .11490 .06513 .06630 .04595 .02188005680382105598 .03013 .01932 .01237 .00568 .00244 .000470002400020 .01832 .00823 .05058 .03013 .01932 .01237 .00568 .00244 .000470002400020 .01874 .01874 .008513 .06630 .04595 .0218800568 .00824 .00047 .00020 .00020 .00823 .00823 .05058 .03013 .01932 .01237 .00568 .00244 .000470002400020 .00823 .00823 .00823 .01932 .01932 .01932 .01932 .01932 .01932 .01932 .01932 .02649 .00849 .00047 .00047 .00024 .00020 .00020 .00823 .00823 .00824 .00849 .0084 | | | | | | | | | | | | 14572 10049 | | | | | | | | | | | | .0310 .0016 .2217 .11716 .11400 .08513 .06630 .04595 .0218800588038210559807279075160719106667 .49222 .23105 .14210 .09363006823 .05058 .03013 .01932 .01237 .00568 .00244 .000470602400020 ITRATE, TIPE -1190.76100 ITERATION NUMBER 3 GBIN1,N=1,102 | | | | | | | | | | | | 038210598907279075160719106667 .49222 .23105 .14210 .09363 .06823 .05058 .03013 .01932 .01237 .00568 .00244 .000470002400020 .0020 .005823 .05058 .03013 .01932 .01237 .00568 .00244 .000470002400020 .00200 .0020 .0020 .0020 .0020 .0020 .0020 .0020 .0020 .0020 .0020 .0020 .0020 .0020 .0020 | | | | | | | | | | | | TTRATE | | | | | | | | | | | | TTERATION NUMBER 3 GB(N),N=1,102 .38766 .34727 .27697 .19579 .12547 .08487 .29732 .25647 .18571 .10398 .0331800766 .26439 .22338 .15230 .070180010004205 .22711 .18550 .11322 .029440432408527 .20681 .16506 .09115 .00369072951173019361 .15678 .08724011200976914456 .17469 .15647 .26457102401273516792 .16929 .17818 .50676376661576218051 .19598 .21578 .5996154251187261872618564 .22104 .23996 .52995555562648518551 .22528 .23903 .45398555992350320488 .22356 .23641 .46816553222621922813 .21556 .23367 .46416557382894225864 .20598 .22831 .45299552273265729033 .18280 .19570 .18742405284123339990 .29695 .27281 .13705203233383036217 .32257 .29530 .15714151872695231664 GWIN),N-1,1400 .40591 .11202 .10908 .07923 .05990 .03909 .0151301124042440630007498076640734807029 .43119 .20749 .13206 .09428 .07600 .06401 .04830 .03600 .02648 .01895 .01335 .00951 .00594 .00385 .41563 .11537 .11298 .08308 .06383 .04302 .0188600819040440615907389075820726606924 .48189 .23027 .14511 .10167 .08116 .06748 .05070 .03976 .03153 .62429 .01818 .01280 .00772 .00499 .41955 .11655 .11412 .08394 .06450 .04349 .0191300803040230612807345075290718806865 .51585 .224666 .15528 .10699 .06603 .07221 .09429 .004273 .03371 .02584 .01914007910399066073 .07274074550711906801 .53690 .25615 .00594 .00374 .42021 .11695 .11466 .08492 .006609 .06571 .0216100557 | | | | | | | | | | | | Terration Number 3 GB(M),N=1,102 .38776 .34727 .27697 .19579 .12547 .08487 .29732 .25647 .18571 .10398 .03318 .00766 .26439 .22338 .15230 .07018 00100 04205 .22711 .18550 .11322 .02944 04244 08527 .20681 .16506 .09115 .00369 007295 11730, .19361 .15576 .08724 01120 09769 14456 .17469 .15647 .26457 10246 12735 16792 .16929 .17818 .50676 37666 15762 18051 .19598 .21578 .25268 .23903 .45398 55599 23503 20488 .22356 .23641 .46816 55322 26219 22813 .21556 .23367 .48416 55738 28942 25864 .20598 .22813 .45299 55227 32657 20933 .18280 .19570 .18742 40528 41233 39990 .29695 .27281 .13705 20323 33830 36217 .32257 .29530 .15714 15187 .26952 31664 .04830 .03600 .02648 .01895 .01335 .00951 .00954 .00385 .41563 .11537 .11298 .06308 .06308 .06308 .06308 .04302 .01886 00819 00404 00404 00159 07389 07582 07246 06244 .48189 .23027 .14511 .10167 .08116 .06748 .05070 .03999 .03153 .02726 06244 .48189 .23027 .14511 .10167 .08116 .06748 .05070 .03990 .03153 .02429 .01818 .01280 .00772 .00499 .41955 .11655 .11612 .08394 .06450 .04349 .01913 .00803 04023 06128 07345 07529 07168 06865 .51585 .24646 .15528 .10899 .06603 .07721 .00499 .41955 .11655 .11612 .08394 .06449 .04447 .01616 .06748 .05070 .03990 .06450 .0749 .00791 .00803 04023 06128 07345 07529 07168 .06865 .01575 .02647 .00803 .00603 .00603 .00722 .00499 .41955 .11655 .11612 .08394 .06449 .04347 .01147 .00803 .00603 .00722 .00499 .00600 .05449
.00649 .00649 .00665 .006944 .006949 .00665 .006944 .006949 .00665 .006944 .006949 .00665 .006944 | .06823 | +05058 | .03013 | .01932 | .01237 | •00568 | .00244 | .00047 | 00024 | 00020 | | \$\begin{array}{cccccccccccccccccccccccccccccccccccc | ITRATE, TIP | E •1190.76 | 100 | | | | | | | | | .38766 | | | | | | | | | | | | .0331800766 | | | | | | | | | | | | .11322 .029440432408527 .20681 .16506 .09115 .0C369072951173019361 .15678 .08724011200978914456 .17469 .15647 .26457102401273516792 .16929 .17818 .50676376661576218051 .19598 .21578 .59961542511872618564 .22104 .23996 .52995555562648518551 .22528 .23903 .453985555992350320488 .22356 .23641 .46816553222621922813 .21556 .23367 .48416557382894225864 .20598 .22831 .45299552273265729933 .18280 .19570 .18742605284123339990 .29695 .27281 .13705203233383036217 .32257 .29530 .15714151872895231664 GW(N),N-1,140 .40591 .11202 .10908 .07923 .05990 .03909 .0151301124042440630007498076840734807029 .43119 .20749 .13206 .09428 .07600 .06401 .04030 .03600 .02648 .01895 .01335 .00951 .00594 .00385 .41563 .11537 .11298 .08308 .06383 .04302 .0188600819040440615907389075820724606924 .48189 .23027 .14511 .10167 .08116 .06748 .05070 .03990 .03153 .02429 .01818 .01280 .00772 .00499 .41955 .11655 .11412 .08394 .06450 .04349 .01913008030402306128073450752907188 .006865 .51585 .24646 .15528 .10899 .06683 .07221 .05429 .04273 .03371 .02584 .01917 .01334 .00794 .00510 .41982 .11662 .11416 .08394 .00449 .04499 .04367 .01917 .01334 .00794 .00510 .41982 .11662 .11416 .08394 .00449 .04397 .00594 .00374 .42021 .11695 .11466 .08492 .00609 .04571 .0216100557 | | | | | | | | | | | | .19361 .15678 .08724 -011200978914456 .17469 .15647 .26457102401273516702 .16929 .17818 .50676376661576218051 .19598 .21578 .59961542511872618564 .22104 .23996 .52995555562648518551 .22528 .23903 .45398555992555992555562648518551 .22528 .23903 .45398555992350320488 .22356 .23641 .46816553222621922813 .21556 .23367 .48416557382894225864 .20598 .22831 .45299552273265729933 .18280 .19570 .18742405284123339990 .29695 .27281 .13705203233383036217 .32257 .29530 .15714151872895231664 | | | | | | | | | | | | 1273516792 .16929 .17818 .50676376661576218051 .19598 .21578 .59961542511872618564 .22104 .23996 .52995555562648518551* .22528 .23903 .45398555992350320488 .22356 .23641 .46816553222621922813 .21556 .23367 .48416557282894225864 .20598 .22831 .45299555273265729933 .18280 .19570 .18742405284123339990 .29695 .27281 .13705203233383036217 .32257 .29530 .15714151872895231664 | | | | | | | | | | | | .59961542511872618564 .22104 .23996 .52995555562C48518551' .22528 .23903 .45398555992350320488 .22356 .23661 .46816553222621922813 .21556 .23367 .484165557382894225864 .20598 .22831 .45299552273265729933 .18280 .19570 .18742405284123339990 .29695 .27281 .13705203233383036217 .32257 .29530 .15714151872895231664 GM(N),N=1,140 .40591 .11202 .10908 .07923 .05990 .03909 .0151301124042440630007498076840734807029 .43119 .20749 .13206 .69428 .07600 .06461 .04830 .03600 .02648 .01895 .01335 .00951 .00594 .00385 .41563 .11537 .11298 .08308 .06383 .04302 .0188600819040440615907389075820724606924 .48189 .23027 .14511 .10167 .08116 .06748 .05070 .03990 .03153 .C2429 .01818 .01280 .00772 .00499 .41955 .11655 .11412 .08394 .06450 .04349 .0191300803040230612807345075290718806865 .51585 .24646 .15528 .10899 .06683 .07221 .05429 .04273 .03371 .02584 .01917 .01334 .00794 .00510 .41982 .11662 .11416 .08394 .06449 .04347 .01914007910399006073 .07274074550711906801 .53690 .25615 .16108 .11256 .00918 .07363 .05426 .04150 .03148 .02298 .01612 .01057 .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216100557 | | | | | | | | | | | | .22528 .23903 .45398555992350320488 .22356 .23641 .46816553222621922813 .21556 .23367 .46416557382894225864 .20598 .22831 .45299552273265729933 .18280 .19570 .18742405284123339990 .29695 .27281 .13705203233383036217 .32257 .29530 .15714151872895231664 | | | | | | | | | | | | 2621922813 .21556 .23367 .48416557382894225864 .20598 .22831 .45299552273265729933 .18280 .19570 .18742405284123339990 .29695 .27281 .13705203233383036217 .32257 .29530 .15714151872895231664 | | | | | | | | | | | | .4529955227326572933 .18280 .19570 .18742405284123339990 .27695 .27281 .13705203233383036217 .32257 .29530 .15714151872895231664 | | | | | | | | | | | | .20695 .27281 .13705203233383036217 .32257 .29530 .15714151872895231664 GW(N),N-1,140 .40591 .11202 .10908 .07923 .05990 .03909 .01513011240424406300 07498076840734807029 .43119 .2C749 .13206 .69428 .07600 .06401 .04830 .03600 .02648 .01895 .01335 .00951 .00594 .00385 .41563 .11537 .11298 .08308 .06383 .04302 .018860091904044061590738907582 0724606924 .48189 .23027 .14511 .10167 .08116 .06748 .05070 .03996 .03153 .C2429 .01818 .01280 .00772 .00499 .41955 .11655 .11412 .08394 .06450 .04349 .0191300803040230612807345075290716806665 .51585 .24646 .15528 .10899 .06683 .07221 .05429 .04273 .03371 .02584 .61917 .01334 .00794 .00510 .41982 .11662 .11416 .08394 .00449 .04347 .61914007910399066073 .05274074550711906801 .53690 .25615 .16108 .11256 .08918 .07363 .05426 .04150 .03148 .02298 .01612 .01057 .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216100557 | | | | | | | | | | | | 2895231664 GM(N),N=1,140 .40591 .11202 .10908 .07923 .05990 .03909 .01513011240424406300 07408076840734807029 .43119 .2C749 .13206 .09428 .07600 .06461 .04830 .03600 .02648 .01895 .01335 .00951 .00594 .00385 .41563 .11537 .11298 .08308 .06383 .04302 .018860081904044061590738907582 0724606924 .48189 .23027 .14511 .10167 .08116 .06748 .65070 .03990 .03153 .C2429 .01818 .01280 .00772 .00499 .41955 .11655 .11412 .08394 .06450 .04349 .0191300803040230612807345075290716806865 .51585 .24646 .15528 .10899 .06683 .07221 .05429 .04273 .03371 .02584 .C1917 .01334 .00794 .00510 .41982 .11662 .11416 .08394 .00449 .04347 .C19140079103990C607307274074550711906801 .53690 .25615 .16108 .11256 .08918 .07363 .05426 .04150 .03148 .02298 .01612 .01057 .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216100557 | | | | | | | | | | | | GW(N),N=1,140 .40591 .11202 .10908 .07923 .05990 .03909 .01513011240424406300 07498076840734807029 .43119 .20749 .13206 .09428 .07600 .06401 .04830 .03600 .02648 .01895 .01335 .00951 .00594 .00385 .41563 .11537 .11298 .08308 .06383 .04302 .018860081904044061590738907582 0724606924 .48189 .23027 .14511 .10167 .08116 .06748 .65070 .03960 .03153 .02429 .01818 .01280 .00772 .00499 .41955 .11655 .11412 .08394 .06450 .04349 .0191300803040230612807345075290718806865 .51585 .24646 .15528 .10899 .08683 .07221 .05429 .04273 .03371 .02584 .01917 .01334 .00794 .00510 .41982 .11662 .11416 .08394 .00449 .04347 .01914007910399066073 .07274 .074550711906801 .53690 .25615 .11608 .11256 .08918 .07363 .05426 .04150 .03148 .02298 .01612 .01057 .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216100557 | | | .13705 | 20323 | 33830 | 36217 | .32257 | .29530 | .15714 | 15187 | | .40591 .11202 .10908 .07923 .05990 .03909 .01513011240424406300074980776840734807029 .43119 .20749 .13206 .09428 .07600 .06461 .04830 .03600 .02648 .01895 .01335 .00951 .00594 .00385 .41563 .11537 .11298 .08308 .06383 .04302 .0188600019040440615907389075820724606924 .48189 .23027 .14511 .10167 .08116 .06748 .05070 .03990 .03153 .02429 .01818 .01280 .00772 .00499 .41955 .11655 .11412 .08394 .06450 .04349 .0191300803040230612807345075290718806865 .51585 .24646 .15528 .10699 .06603 .07221 .05429 .04273 .03371 .02584 .01917 .01334 .00794 .00510 .41982 .11662 .11416 .08394 .06449 .04347 .61914007910399006073 .07274 .074550711906801 .53690 .25615 .16108 .11256 .08918 .07363 .05526 .04150 .03148 .02298 .01612 .01057 .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216100557 | | | | | | | | | | | | 07498076840734807029 .43119 .20749 .13206 .09428 .07600 .06401 .04830 .03600 .02648 .01895 .01335 .00951 .00594 .00385 .41563 .11537 .11298 .08308 .06383 .04302 .018860081904044061590738907582 .07600 .03153 .02429 .01818 .01280 .00772 .00499 .41955 .11655 .11412 .08394 .06450 .04349 .0191300803040230612807345075290718806855 .51585 .24646 .15528 .10899 .06683 .07221 .05429 .04273 .03371 .02584 .01917 .01334 .00794 .00510 .41982 .11662 .11416 .08394 .00649 .04347 .0191400791039900607307274074550711906801 .53690 .25615 .1608 .11256 .08918 .07363 .05426 .04150 .03148 .02298 .01612 .01057 .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216100557 | | | | | | | | | | | | .04830 .03600 .02648 .01895 .01335 .00951 .00594 .00365 .41563 .11537 .11298 .08308 .06383 .04302 .01886 .0081904044061590738907582 .007546 .06974 .48189 .23027 .14511 .10167 .08116 .06748 .065070 .03959 .03153 .02429 .01818 .01280 .00772 .00499 .41955 .11655 .11412 .08394 .06450 .04349 .0191300803040230612807345075290716806665 .51585 .24646 .15528 .10899 .06683 .07221 .05429 .04273 .03371 .02584 .01917 .01334 .00794 .00510 .41982 .11662 .11416 .08394 .06449 .04347 .0191400791039900607307274074550711906801 .53690 .25615 .1608 .11256 .08918 .07363 .05426 .04150 .03148 .02298 .01612 .01057 .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216100557 | | | | | | | | | | | | .11298 .08308 .06383 .04302 .0188600819040440615907389075820724606924 .48189 .23027 .14511 .10167 .08116 .06748 .65070 .03960 .03153 .62429 .01818 .01280 .00772 .00499 .41955 .11655 .11412 .08394 .06450 .04349 .0191300803040230612807345075290716806865 .51585 .24646 .15528 .10899 .08683 .07221 .05429 .04273 .03371 .02584 .01917 .01334 .00794 .00510 .41982 .11662 .11416 .08394 .06449 .04347 .0191400791039906607307274074550711906801 .53690 .25615 .16108 .11256 .08918 .07363 .05426 .04150 .03148 .02298 .01612 .01057 .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216100557 | | | | | | | | | | | | 0724606924 .48189 .23027 .14511 .10167 .08116 .06748 .05070 .03990 .03153 .02429 .01818 .01280 .00772 .00499 .41955 .11655 .11412 .08394 .06450 .04349 .0191300803040230612807345075290718806865 .51585 .24646 .15528 .10699 .06683 .07221 .05429 .04273 .03371 .02584 .01917 .01334 .00794 .00510
.41982 .11662 .11416 .08394 .06449 .04347 .6191400791039900607307274074550711906801 .53690 .25615 .16108 .11256 .08918 .07363 .05426 .04150 .03148 .02298 .01612 .01057 .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216100557 | .04830 | .03600 | | | | | | | | | | .03153 .02429 .01818 .01280 .00772 .00499 .41955 .11655 .11412 .08394 .06450 .04349 .0191300803040230612807345075290716806865 .51565 .24646 .15528 .10699 .06683 .07221 .05429 .04273 .03371 .02584 .01917 .01334 .00794 .00510 .41982 .11662 .11416 .08394 .06449 .04347 .0191400791039900607307274074550711906801 .53690 .25615 .16108 .11256 .08918 .07363 .05426 .04150 .03148 .02298 .01612 .01057 .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216100557 | | .06308 | | | | | | | | | | .06450 .04349 .0191300803040230612807345075290716806865 .51585 .24646 .15528 .10699 .06683 .07221 .05429 .04273 .03371 .02584 .01917 .01334 .00794 .00510 .41982 .11662 .11416 .08394 .06449 .04347 .0191400791039900507307274074550711906801 .53690 .25615 .16108 .11256 .08918 .07363 .05426 .04150 .03148 .02298 .01612 .01057 .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216100557 | 072 46 | | | | | | | | | | | .51585 .24646 .15528 .10899 .08683 .07221 .05429 .04273 .03371 .02584 .01917 .01334 .00794 .00510 .41982 .11662 .11416 .08394 .06449 .04347 .0191400791039900607307274074550711906801 .53690 .25615 .16108 .11256 .08918 .07363 .05426 .04150 .03148 .02298 .01612 .01057 .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216100557 | .03153 | .02429 | .01818 | .01280 | .00772 | | .41955 | | .11412 | .08394 | | .01917 .01334 .00794 .00510 .41982 .11662 .11416 .08394 .06449 .04347 .0191400791039900507307274074550711906801 .53690 .25615 .16108 .11256 .08918 .07363 .05426 .04150 .03148 .02298 .01612 .01057 .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216100557 | .06450 | .04349 | .01913 | 00803 | | | | 07529 | 07168 | 06865 | | .6191400791039906507307274074550711906801 .53690 .25615 .16108 .11256 .08918 .07363 .05426 .04150 .03148 .02298 .01612 .01057 .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216160557 | •5158 5 | .24646 | .15528 | •10E99 | .06683 | | | | | | | .16108 .11256 .08918 .07363 .05426 .04150 .03148 .02298 .01612 .01057 .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216160557 | .01917 | | .00794 | .00510 | .41982 | .11662 | .11416 | .08394 | . 06449 | .04347 | | .00594 .00374 .42021 .11695 .11466 .08492 .06609 .04571 .0216100557 | | | | | | | | | | | | | .16108 | •11256 | .08918 | .07363 | .05426 | .04150 | .03148 | .02298 | .01612 | | | 03707 - 05079 - 07704 - 07611 - 077188 - 04444 - 1354 026140 - 1648A | | | | | .11466 | | | | | | | | A 3 7 G 7 | e_05072 | N72 KQ | - 47511 | - -071 88 | - 04011 | =1354 | 24140 | AARAI. | AARDA. | | .07238 | .05415 | .03302 | .02178 | .01441 | .00879 | .00443 | .00149 | .00014 | .00000 | |--------------|------------|----------|---------------|--------|---------|--------|----------------|---------|--------| | ITRATE, TIM | E •1192.15 | 200 | | | | | | | | | ITERATION N | | | | | | | | | | | GP(N),N=1, | | | | _ | | | | | | | .38844 | .34770 | •27712 | • 19562 | •12504 | .08429 | .29811 | .25704 | .18591 | .10376 | | .03261 | 00848 | .26561 | .22427 | .15262 | .06984 | 00188 | 04331 | .22927 | .18709 | | •11379 | .02 P 86 | 04487 | 08748 | .21078 | .16803 | .09225 | .00258 | 07601 | 12138 | | .19987 | .16200 | .08961 | 01360 | 10333 | 15114 | 18646 | •16571 | .28921 | 12590 | | 13703 | 17701 | .1 63 70 | .19531 | •59467 | 46393 | 17544 | 19160 | -20659 | •23868 | | •74225 | 68471 | 21064 | 19693 | -23488 | .27104 | .68843 | 71410 | 23602 | 19951 | | •24256 | •27700 | .61866 | 72117 | 27300 | 22211 | .24435 | .28029 | •64360 | 72825 | | 30610 | 24668 | .24033 | •2 6269 | .66453 | 73721 | 33850 | 2 83 43 | .23613 | .28337 | | .62194 | 72478 | 38166 | 32951 | -22624 | .25872 | -27912 | 49932 | 47700 | 44328 | | .35333 | .33794 | .18292 | 24922 | 40338 | 41847 | .37788 | .35748 | .19781 | 19266 | | 35167 | 37188 | | | | | | | | | | GW(N), N=1, | | 10000 | | **** | | | | | | | .40586 | .11201 | .10908 | .07923 | .05991 | .03911 | .01515 | 01121 | 04241 | 06297 | | 07496 | 07682 | 07345 | 07026 | .46191 | .22355 | .14321 | .10352 | .08451 | .07226 | | .05620 | .04332 | .03331 | •02505 | .01854 | .01370 | .C0877 | .00571 | .41556 | •11535 | | .11296 | •06306 | .06381 | •04301 | .01885 | 00819 | 04043 | 06158 | 07387 | 07581 | | 07244 | 06923 | •51260 | .24554 | •15516 | .10953 | .08779 | .07349 | .05606 | -04488 | | .03616 | .02843 | .02171 | .01556 | .00952 | .00618 | .41944 | .11652 | .11408 | .08391 | | .06448 | .04347 | .01912 | 00802 | 04022 | 06126 | 67343 | 07528 | C7187 | 06865 | | .54251 | .25951 | .16373 | .11523 | .09206 | .07681 | .05818 | .04620 | .03684 | .02858 | | .02147 | .01512 | .00910 | .00587 | •41970 | .11659 | .11412 | .08391 | .06446 | .04345 | | •01912 | 00791 | 03989 | 06072 | 07274 | 07455 | 67120 | 06601 | •55c97 | .26580 | | •16719 | .11688 | .09261 | .07646 | .05631 | .04304 | .03267 | .02387 | .01678 | .01102 | | .00622 | .00391 | .42013 | •11693 | .11464 | .08490 | .06607 | .04568 | .02158 | 00559 | | 03799 | 05974 | 07270 | 07512 | 07189 | 06866 | .52955 | .24906 | .15355 | .10174 | | .07465 | .05584 | .03403 | .02242 | .01483 | .00889 | .00446 | .00149 | •00013 | 00000 | | ITRATE, TIME | -1193.55 | 300 | | | | | | | | | ITERATION NO | | | | | | | | | | | GB(N),N=1,1 | 102 | | | | | | | | | | .36671 | .34789 | .27719 | .19555 | .12484 | •08402 | .29848 | .25731 | .18601 | .10366 | | .03234 | 00884 | .26619 | • 22469 | •15278 | .06969 | 00230 | 04388 | .23030 | .18784 | | .11407 | .02B5B | 04562 | 08850 | .21270 | .16947 | .09279 | . 00205 | 07744 | 12328 | | .20295 | .16459 | .09078 | 01477 | 10589 | 15419 | .19033 | .17033 | .30193 | 13874 | | 14160 | 18114 | .18850 | .20381 | .63780 | 50705 | 18385 | 19671 | .21156 | .24964 | | .81002 | 75248 | 22155 | 20185 | .24117 | .2 8560 | .76407 | 78970 | 25059 | 20581 | | .25030 | .29463 | .69723 | 79969 | 29066 | 22989 | .25360 | .30052 | .72722 | 81148 | | 32635 | 25819 | .25129 | .30515 | .75033 | 82267 | 36098 | 29446 | . 24944 | .30853 | | .70451 | 80671 | 40682 | 34286 | .24562 | . 28859 | .32372 | 54375 | 50666 | 46265 | | .37872 | .36780 | .20434 | 27070 | 43322 | 44383 | .40279 | .38598 | .21677 | 21167 | | 38014 | 39675 | | | _ | | | _ | | '• | • | .40586 | .11201 | .10908 | .07923 | .05991 | .03911 | .01515 | 01121 | 04241 | 06297 | |-------------|----------------|----------|-------------------|----------|----------------|---------|---------|----------|--------| | 07496 | 07682 | 07345 | 07025 | .4 75 95 | .23092 | .14834 | .10779 | .08846 | .07607 | | .05979 | •04653 | .C3618 | .02750 | .02060 | .01532 | .00984 | .00640 | • 41556 | .11535 | | •11296 | .08307 | .06381 | .04301 | .01885 | 00819 | 04043 | 06158 | 07387 | 07580 | | 07244 | 06923 | •52577 | .25210 | .15948 | .11283 | •09065 | •07669 | •05t36 | .04696 | | •03799 | •02999 | .02296 | •01649 | .01011 | .00656 | .41945 | •11652 | .11408 | .00391 | | •06448 | •04347 | .01912 | 00902 | 04022 | 01126 | 07343 | 07528 | 07167 | 06864 | | .55320 | .26475 | .16712 | •11773 | .C9417 | •07866 | .05972 | .04752 | .03793 | .02945 | | •02212 | .01557 | .00936 | .00603 | •41971 | .11659 | .11412 | .08392 | .06446 | .04345 | | .01913 | 00791 | 03989 | → •0 60 72 | 07274 | 07455 | 07119 | 06801 | .56518 | .26979 | | .16974 | •11673 | .09414 | •07778 | .05738 | .04393 | .03338 | .02442 | .01717 | .01128 | | • C O & 37 | .00400 | .42013 | .11693 | .11464 | •0849 0 | .06607 | .04568 | .02158 | 00560 | | 03799 | 05974 | 07270 | 07512 | 07189 | 06666 | .53577 | .25202 | .15541 | .10301 | | .07561 | .0566 0 | • 034 54 | .02279 | .01510 | .00909 | . 00458 | .00153 | .CG015 | •00000 | | ITRATE, TIM | E =1194.95 | 400 | | | | | | | | | ITERATION N | UMBER 6 | | | | | | | | | | GB(N),N=1, | 102 | | | | | | | | | | .38883 | .34798 | .27722 | .19552 | .12476 | .08390 | . 29864 | .25743 | .18605 | .10362 | | .03222 | 00900 | .26644 | .22488 | .15285 | .06962 | 00249 | 04413 | .23075 | .18817 | | .11419 | .02846 | 04595 | 08895 | .21354 | .17010 | .09303 | . OC181 | 07807 | 12413 | | .20431 | .16573 | .09130 | 01529 | 10703 | 15555 | .19221 | .17238 | .30762 | 14441 | | 14365 | 18300 | .19080 | .20759 | .65734 | 52660 | 18765 | 19899 | .21366 | .25443 | | .64046 | 78292 | 22635 | 20395 | .24385 | .29193 | .79721 | 02285 | 25692 | 20849 | | .25359 | .30219 | .73097 | 83345 | 29822 | 23319 | . 25752 | .30910 | .76280 | 84691 | | 33494 | 26212 | .25590 | •31462 | .78679 | 85899 | 37047 | 29909 | . 25501 | .31913 | | .73938 | 84152 | 41743 | 34845 | .25376 | .30111 | .34254 | 56261 | 51918 | 47078 | | -38940 | .38041 | .21341 | 27980 | 44581 | 45450 | .41327 | .39801 | .22479 | 21972 | | 39217 | 40722 | | | | | | | | | | GW(N),N=1, | 140 | | | | | | | | | | •40566 | .11201 | .10908 | .07923 | .05991 | .03911 | .01515 | 01121 | 04241 | 06297 | | 07496 | 07682 | 07345 | 07025 | •48206 | .23412 | .15057 | .16963 | .09015 | .07770 | | •06130 | .04787 | .03737 | .02850 | .02142 | .01595 | .01024 | .00666 | -41556 | .11535 | | .11296 | .08307 | .06381 | .04301 | .01685 | 00819 | 04043 | 06158 | 07387 | 07580 | | 07244 | 06923 | .53134 | .25486 | .16129 | .11421 | .09184 | .07715 | . 059 29 | .04779 | | .03873 | .030£1 | .02346 | .01686 | .01033 | .00671 | . 41945 | .11652 | .11408 | .08391 | | .06448 | .04347 | .01912 | 00802 | 04022 | 06126 | 07343 | 07528 | 071 67 | 06864 | | .55774 | .26697 | .16856 | .11880 | .09506 | .07944 | .06038 | .04809 | .03843 | .02986 | | .02245 | -01581 | .00951 | .00613 | .41971 | .11659 | .11412 | .08392 | .06446 | .04345 | | .01913 | 00791 | 03989 | 06072 | 07274 | 07455 | 07119 | 06801 | .56670 | .27149 | | .170 83 | .11952 | .09478 | .07833 | .05782 | .04429 | .03368 | .02465 | .01734 | .01140 | | .00643 | .00405 | .42013 | .11693 | .11464 | 0 84 90 | 06607 | .04568 | . C2158 | 00560
| | 03799 | 05974 | 07270 | 07512 | 07189 | 06866 | -53846 | .25331 | .15621 | 10355 | | .07602 | .05691 | .03474 | .02294 | .01521 | .00916 | .00462 | .00156 | ,00015 | .00001 | ITRATE, TIME -1196.37100 ### TTERATION NUMBER | GE(N),N=1, | 102 | | | | | | | | | |-------------|------------|---------|-----------|---------|-----------|----------|-------------|---------|---------| | .38866 | .34802 | .27724 | .19550 | .12472 | .08385 | .29870 | .25748 | .18607 | .10360 | | .03218 | 00907 | -26654 | .22495 | -15287 | .06959 | 00256 | 04423 | -23094 | .18631 | | .11424 | .02841 | 04609 | 08914 | .21389 | .17037 | .09313 | .00171 | 07834 | 12448 | | .20468 | .16621 | .09152 | 01551 | 1C752 | 15612 | .19300 | .17325 | .31007 | 14666 | | 14453 | 18379 | .19176 | .20921 | •66568 | 53494 | 18927 | 19994 | .21454 | .25645 | | .85331 | 79577 | 22836 | 20483 | .24497 | 29458 | .81113 | 83677 | 25957 | 20961 | | .25497 | 30534 | •74506 | 84754 | 30138 | - 23457 | .25915 | .31268 | •77762 | 86167 | | 33852 | 26377 | .25783 | •31857 | .80198 | - 87412 | 37442 | 30102 | . 25734 | .32355 | | .75393 | 85601 | 42185 | 35078 | .25716 | •30633 | .35039 | 57046 | 52440 | 47417 | | .39386 | .38566 | .21719 | 28359 | 45106 | 45895 | .41764 | .40303 | . 22814 | | | 39718 | 41159 | • 21117 | -120334 | -440100 | | .41164 | • • 0 3 0 3 | . 22014 | 22307 | | GW(N),N=1, | | | | | | | | | | | 40586 | .11201 | .10908 | .07923 | .05791 | .03911 | .01515 | 01121 | 04241 | - 04207 | | 07496 | 07682 | 07345 | 07025 | .48461 | .23546 | .15150 | •11041 | .09086 | 06297 | | •06193 | .04842 | .03785 | •02891 | | | | | | .07838 | | •11296 | | | | .02175 | .01620 | .01041 | .00677 | .41556 | •11535 | | 07244 | .08307 | .06381 | .04301 | 401885 | 00819 | 04043 | 06158 | 07387 | 07580 | | | 06923 | •53367 | .25602 | .16205 | .11479 | .09233 | .07760 | .05968 | .04815 | | .03904 | .030.87 | .02368 | .01702 | .01043 | .0C677 | •41944 | .11652 | •11408 | .08391 | | .06448 | .04347 | .01912 | 008C2 | 04022 | 06126 | 67343 | 07528 | 07187 | 06864 | | •55965 | .26791 | .16916 | .11924 | .09544 | .07977 | .06066 | .04834 | .03864 | .03004 | | •02259 | .01591 | .00957 | .00617 | 41971 | -11659 | •11412 | .08392 | .06446 | .04345 | | .01913 | 00791 | 03989 | 06072 | 07274 | 07455 | 07119 | 06801 | .57017 | .27221 | | .17129 | .11985 | •09505 | .07856 | .05800 | .04444 | .033 80 | .02474 | •01741 | .01145 | | .00646 | .00406 | 42013 | •11693 | .11464 | .08490 | .06607 | •04568 | .02158 | 00560 | | 03799 | 05974 | 07270 | 07512 | 07189 | 06866 | .53958 | .25384 | .15654 | .10378 | | .07619 | .05704 | .03483 | .02300 | .01525 | .00918 | • 004 64 | .00157 | •00016 | .00061 | | ITRATE, TIM | E =1197.77 | 600 | | | | | | | | | ITERATION N | UMBER 8 | | | | | | | | | | GB(N),N=1, | 102 | | | | | | | | | | -38690 | .34803 | .27724 | .19550 | .12470 | .06383 | .29873 | .25750 | .18£08 | .10359 | | .03215 | 00909 | -26659 | .22498 | .15289 | .06958 | 00260 | 04428 | .23102 | .18837 | | .11426 | .02839 | 04615 | 08922 | .21404 | .17048 | .09317 | .00167 | 07845 | 12463 | | .20512 | .16642 | .09161 | 01560 | 10772 | 15636 | .19332 | .17362 | 31108 | 14788 | | 14489 | 18412 | .19216 | 20988 | .66915 | 53841 | 18994 | 20034 | .21491 | .25729 | | .65865 | 80111 | 22920 | 20520 | .24544 | .2 95 6 8 | .81690 | 84254 | 26067 | 21008 | | .25555 | •30666 | •75090 | 85339 | 30269 | 23514 | 25984 | | | | | 34001 | | .25863 | •32022 | .80827 | 88039 | | •31417 | •78376 | 86778 | | | 26445 | | | | | 37607 | 3C183 | .75832 | .32539 | | .75995 | 86202 | | • ~.35176 | .25858 | . 308 51 | .35364 | 57372 | 52657 | 47559 | | .39572 | .38785 | .21876 | 26516 | 45325 | 46061 | •41947 | .40512 | .22952 | 22446 | | 39926 | 41341 | | | | | | | | | | GW(N),N-1, | | | | | | | | | | | .40586 | .11201 | .10908 | .07923 | .05991 | .03911 | .01515 | 01121 | 04241 | 06297 | | 07496 | 07682 | 07345 | 07025 | .48568 | .23602 | .15189 | .11073 | .09115 | .07866 | | .06219 | .04865 | .03806 | .02908 | .02189 | .01631 | .01045 | :00582 | .41556 | .11535 | | •11296 | .08307 | .06381 | .04301 | .01885 | 00819 | 04043 | 06158 | 07387 | 07580 | | ·. N 7744 | 014023 | -53664 | . 25650 | -16237 | .11502 | 00254 | N777Q | -05985 | - 04830 | | .03918 | .03099 | .02377 | .01709 | .01047 | .00680 | .41944 | -11652 | .11408 | .08391 | |-------------|----------------|----------|----------|--------|---------------|----------|-------------|----------|---------| | .06448 | .04347 | .01912 | 00802 | 04022 | 06126 | 07343 | 07528 | 07187 | 06864 | | .56045 | -26830 | .16941 | .11943 | .09559 | .07991 | .0£077 | .04844 | .03873 | .03011 | | .02265 | .01595 | •00760 | .00619 | .41971 | .11559 | .11412 | .08392 | .06446 | .04345 | | .01913 | 00791 | 03989 | 06072 | 07274 | 07455 | 07119 | 06801 | .57078 | .27250 | | .17148 | .11999 | .09517 | •07866 | .05808 | .04450 | .03385 | .02478 | .01744 | .01147 | | .00647 | .00407 | .42013 | .11693 | .11464 | .UE490 | .06607 | .04568 | . 021 58 | 00560 | | 03799 | 05974 | 07270 | 07512 | 07189 | 06866 | .54005 | .25406 | .15668 | .10387 | | .07627 | .05710 | .03487 | .02303 | .01527 | .00920 | .00464 | .00157 | .00016 | .00001 | | ITRATE, TIE | E •1199.16 | 700 | | | | | | | | | ITERATION N | UMBER 9 | | | | | | | | | | GB(N),N=1, | | | | | | | | | | | .38891 | .34804 | . 27724 | .19550 | -12470 | .08382 | .29874 | .25751 | .18608 | .10359 | | .03215 | 00911 | .26661 | .22500 | .15287 | .06958 | 00261 | 04430 | .23105 | .16839 | | .11427 | . 02838 | 04617 | 08926 | .21410 | .17052 | •09319 | .00165 | 07850 | 12469 | | .20522 | .16650 | .09165 | 01564 | 10780 | 15646 | .19346 | .17377 | .31151 | 14830 | | 14504 | 18425 | . 192 32 | .21016 | .67060 | 53986 | 19022 | 20051 | .21506 | .25764 | | 89039. | ec334 | 22956 | 20535 | .24563 | . 29614 | .81932 | 84496 | 26113 | 21027 | | .25579 | .30721 | .75336 | 85584 | 30324 | 23539 | .26012 | .31480 | .78635 | 87036 | | 34064 | 26474 | .25897 | .32091 | .81092 | 88303 | 37676 | 30217 | .25872 | . 32617 | | •7£249 | 86455 | 42446 | 35217 | .25917 | .30942 | .35501 | 57509 | 52748 | 47618 | | 39649 | .36677 | .21942 | 28582 | 45417 | 46158 | .42023 | .40599 | .23011 | 22505 | | 40014 | 41418 | | | | | | • . • • • • | | | | GW(N), N-1, | | | | | | | | | | | .40586 | .11201 | .10908 | .07923 | .05991 | •03911 | .01515 | 01121 | 04241 | 06297 | | 07496 | 07682 | 07345 | 07025 | .4B613 | .23626 | .15205 | .11086 | .09128 | .07878 | | •06230 | •04875 | .03814 | .02915 | .02195 | .01636 | .01051 | .00684 | 41556 | .11535 | | .11296 | .08307 | .06381 | .04301 | .01885 | 00819 | 04043 | 06158 | 07387 | 07580 | | 072 44 | 06923 | .53505 | .25670 | .16250 | .11513 | .09263 | .07787 | .05992 | .04836 | | .03923 | .03103 | .023 80 | .01712 | .01049 | .00681 | . 419 44 | .11652 | .11408 | .08391 | | .06448 | 04347 | .01912 | 00802 | 04022 | 06126 | 07343 | 07528 | 071 87 | 06864 | | -56078 | 26846 | .16952 | •11951 | .09566 | .07997 | 58030 | .04848 | .03876 | .03014 | | .02267 | .01597 | .00961 | .00619 | .41971 | .11659 | .11412 | .08392 | .06446 | .04345 | | .01913 | 00791 | 03989 | 06072 | 07274 | 07455 | 07119 | 0 t 8 01 | .57104 | .27263 | | .17156 | 12005 | .09521 | .07870 | .05811 | 04453 | .03387 | .024 80 | .01745 | .01148 | | .00648 | .00408 | .42013 | .11693 | .11464 | .08490 | .06607 | .04568 | . 021 58 | 00560 | | 03799 | 05974 | 07270 | 07512 | 07189 | 06866 | .54025 | .25415 | .15674 | .10391 | | .07630 | .05712 | .03488 | .02304 | .01528 | .00920 | .00465 | .00157 | .00016 | .00001 | | ITRATE, TIN | E =1200.57 | 400 | | | | | | | | | ITERATION N | | | | | | | | | | | GP(N),N=1, | | | | | | | | | | | .38891 | .34804 | .27724 | • 195 49 | •12470 | .08362 | .29875 | .25751 | .18608 | .10359 | | .03214 | 00911 | .26661 | .22500 | .15289 | .06957 | 00262 | 04430 | .23106 | -18840 | | -11427 | .02838 | C4618 | 08927 | .21413 | .17054 | .09320 | •00164 | 07852 | 12472 | | -20574 | <u>. 16654</u> | - 091 67 | 01566 | 10784 | 1865A | . 10357 | .1 73 83 | .31169 | 14848 | | 14511 | 18431 | .19239 | •21028 | .67120 | 54046 | 19034 | 20058 | .21513 | .25779 | |--|---|---|--|--|--|--|--|--|--| | .86181 | 80427 | 22970 | 20542 | •24571 | .29634 | .82034 | 84597 | 26133 | 21036 | | .25589 | .30744 | .75439 | 85687 | 30348 | 23549 | .26024 | .31506 | •78743 | 87144 | | 34040 | 26486 | 25911 | .32120 | .81203 | 88413 | 37705 | 30231 | . 25889 | .32649 | | .76355 | 86561 | - 42479
| 35234 | . 25942 | .30980 | . 35558 | 57566 | 52786 | 47643 | | .396.82 | .38915 | 21969 | 28610 | - 45455 | 46191 | 42055 | •4G636 | .23035 | 22529 | | 4C050 | 41450 | ••• | | | • | 4 | ., | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | GW(N),N=1, | | | | | | | | | | | .40586 | .11201 | .10908 | .07923 | .05991 | .03911 | .01515 | 01121 | 04241 | 06297 | | 07496 | 07682 | 07345 | 07025 | .48£31 | .23635 | .15212 | .11092 | .09133 | .07883 | | .06235 | .04879 | .03818 | .02919 | .02198 | .01638 | .01053 | .00684 | •41556 | .11535 | | •11296 | .08307 | .06381 | .04301 | .01885 | 00819 | 04043 | 06158 | 07387 | 07580 | | 07244 | 06923 | .53522 | .25679 | ·16256 | .11518 | .09267 | .07790 | .05995 | .04838 | | .03926 | .03105 | .02382 | .01713 | .01050 | .006 EZ | .41944 | .11652 | .11408 | .08391 | | .06448 | .04347 | .01912 | 00802 | 04022 | 06126 | 07343 | 07528 | 07187 | 06864 | | •56092 | .26853 | .16956 | .11954 | .09549 | •07999 | .O £084 | .04850 | . 03878 | .03015 | | .02268 | .01598 | .00961 | .00620 | •41971 | .11659 | •11412 | · C8392 | .06446 | .04345 | | •C1913 | 00791 | 03989 | 06072 | 07274 | 07455 | 07119 | 06801 | .57115 | .27268 | | .17159 | .12007 | .09523 | .07872 | .05813 | .04454 | .03388 | .02481 | .01746 | .01148 | | .00648 | .00408 | .42013 | •11693 | .11464 | .08490 | .06t07 | .04568 | .02158 | 00560 | | 03799 | 05974 | 07270 | 07512 | 07189 | 06866 | .54033 | .25419 | .15677 | .10393 | | .07631 | .05713 | .03469 | .02304 | .01528 | .00920 | .00465 | .00158 | .00016 | .00001 | | ITRATE, TIM | E •1201.97 | 900 | ITERATION N GB(h),N=1, | | | | | | | - | | | | | | •27724 | .19549 | •12469 | .08382 | .29875 | •25751 | •18608 | •10359 | | GB (N) , N = 1, | 102 | •27724
•26662 | •19549
•22501 | •12469
•15289 | .08382
.06957 | 00262 | •25751
••04431 | .23107 | •10359
•18841 | | GB(N),N-1,
.38891 | .34804 | .26662
04619 | .22501
08927 | .15289
.21414 | .06957
.17055 | 00262
.09320 | 04431
.00164 | .23107
07852 | .18841
12473 | | GB(N),N=1,
.36891
.03214 | .34804
00711 | .26662
04619
.09167 | .22501
08927
01566 | .15289
.21414
10785 | .06957
.17055
15652 | 00262
.09320
.19354 | 04431
.00164
.17386 | .23107
07852
.31176 | .18841
12473
14856 | | GB(N),N=1,
.38891
.03214
.11427 | .34804
00711
.02837 | .26662
04619
.09167
.19242 | .22501
08927
01566
.21033 | •15289
•21414
••10785
•67146 | .06957
.17055
15652
54072 | 00262
.09320
.19354
19039 | 04431
.00164
.17386
20061 | .23107
07852
.31176
.21515 | .18841
12473
14856
.25785 | | GB(N),N=1,
.38891
.03214
.11427
.20528 | .34804
00711
.02837
.16655 | .26662
04619
.09167 | .22501
08927
01566 | .15289
.21414
10785 | .06957
.17055
15652 | 00262
.09320
.19354 | 04431
.00164
.17386 | .23107
07852
.31176
.21515
26141 | .18841
12473
14856
.25785
21039 | | GB(N),N=1,
.38891
.03214
.11427
.2C528
14513 | .34804
00711
.02837
.16655
16434
80467
.30754 | .26662
04619
.09167
.19242
22977
.75482 | .22501
08927
01566
.21033
20544
85730 | •15289
•21414
••10785
•67146
•24575
••30357 | .06957
.17055
15652
54072
.29642
23553 | 00262
.09320
.19354
19039
.82076
.26029 | 04431
.00164
.17386
20061
84640
.31517 | .23107
07852
.31176
.21515
26141
.78788 | •18841
•12473
•14856
•25785
•-21039
•-87189 | | GB(N),N=1,
.38891
.03214
.11427
.2C528
14513
.86221 | .34804
00711
.02837
.16655
16434
60467 | .26662
04619
.09167
.19242
22977
.75482
.25917 | .22501
08927
01566
.21033
20544
85730
.32132 | .15289
.21414
10785
.67146
.24575
30357
.81250 | .06957
.17055
15652
54072
.29642
23553
88460 | 00262
.09320
.19354
19039
.82076
.26029 | 04431
.00164
.17386
20061
84640
.31517
30237 | .23107
07852
.31176
.21515
26141
.76788
.25897 | .18841
12473
14856
.25785
21039
87189 | | GB(N),N=1,
.38891
.03214
.11427
.20528
14513
.86221
.25593 | .34804
00711
.02837
.16655
16434
80467
.30754 | .26662
04619
.09167
.19242
22977
.75482
.25917
42492 | .22501
08927
01566
.21033
20544
85730
.32132
35241 | .15289
.21414
10785
.67146
.24575
30357
.81250
.25953 | .06957
.17055
15652
54072
.29642
23553
88460
.30996 | 00262
.09320
.19354
19039
.82076
.26029
37717 | 04431
.00164
.17386
20061
84640
.31517
30237
57590 | .23107
07852
.31176
.21515
26141
.76788
.25897 | .18841
12473
14856
.25785
21039
87189
.32662
47653 | | GB(N),N-1,
.38891
.03214
.11427
.20528
14513
.66221
.25593
34101
.76400 | .34804
00711
.02837
.16655
16434
80467
.30754
26491
86606
.38931 | .26662
04619
.09167
.19242
22977
.75482
.25917 | .22501
08927
01566
.21033
20544
85730
.32132 | .15289
.21414
10785
.67146
.24575
30357
.81250 | .06957
.17055
15652
54072
.29642
23553
88460 | 00262
.09320
.19354
19039
.82076
.26029 | 04431
.00164
.17386
20061
84640
.31517
30237 | .23107
07852
.31176
.21515
26141
.76788
.25897 | .18841
12473
14856
.25785
21039
87189 | | GB(N),N-1,
.38891
.03214
.11427
.20528
-14513
.66221
.25593
-34101
.76400 | 102
-34804
-00711
02837
-16655
-16436
-80467
-30754
-26491
-86606
-38931
-41463 | .26662
04619
.09167
.19242
22977
.75482
.25917
42492 | .22501
08927
01566
.21033
20544
85730
.32132
35241 | .15289
.21414
10785
.67146
.24575
30357
.81250
.25953 | .06957
.17055
15652
54072
.29642
23553
88460
.30996 | 00262
.09320
.19354
19039
.82076
.26029
37717 | 04431
.00164
.17386
20061
84640
.31517
30237
57590 | .23107
07852
.31176
.21515
26141
.76788
.25897 | .18841
12473
14856
.25785
21039
87189
.32662
47653 | | GB(N),N-1,
.38891
.03214
.11427
.20528
14513
.66221
.25593
34101
.76400 | 102
-34804
-00711
02837
-16655
-16436
-80467
-30754
-26491
-86606
-38931
-41463 | . 26662
04619
.09167
.19242
22977
.75482
.25917
42492
.21981 | .22501
08927
01566
.21033
20544
85730
.32132
35241
28622 | .15289
.21414
10785
.67146
.24575
30357
.81250
.25953
45471 | .06957
.17055
15652
54072
.29642
23553
88460
.30996
46205 | 00262
.09320
.19354
19039
.82076
.26029
37717
.355 82
.42068 | 04431
.00164
.17386
20061
84640
.31517
30237
57590
.40651 | .23107
07852
.31176
.21515
26141
.76788
.25897
52602
.23046 | .18841
12473
14856
.25785
21039
87189
.32662
47653
22540 | | GB(N),N-1,
.38891
.03214
.11427
.20528
14513
.66221
.25593
34101
.76400
.39696
-40066
GM(N),N-1,
.40586 | .34804
00711
.02837
.16655
16434
80467
.30754
26491
86606
.38931
41463 | . 26662
04619
.09167
.19242
22977
.75482
.25917
42492
.21981 | .22501
08927
01566
.21033
20544
85730
.32132
35241
28622 | .15289
.21414
-10785
.67146
.24575
30357
.81250
.25953
45471 | .06957
.17055
15652
54072
.29642
23553
82640
.30996
46205 | 00262
.09320
.19354
19039
.82076
.26029
37717
.355 82
.42068 | 04431
.00164
.17386
20061
84640
.31517
30237
57590
.40651 | .23107
07852
.31176
.21515
26141
.76788
.25897
52602
.23046 | .18841
12473
14856
.25785
21039
87189
.32662
47653
22540 | | GB(N),N-1,
.38891
.03214
.11427
.20528
-14513
.66221
.25593
-34101
.76400
.39696
-40066
GW(N),N-1, | 102
-34804
-00911
02837
-16655
-16434
80467
-30754
26491
81606
-38931
41463 | . 26662
04619
.09167
.19242
22977
.75482
.25917
42492
.21981 | .22501
08927
01566
.21033
20544
85730
.32132
35241
28622 | .15289
.21414
-10785
.67146
.24575
-30357
.81250
.25953
-45471 | .06957
.17055
-15552
-54072
.29642
-23553
-88460
.30996
-46205 | 00262
.09320
.19354
19039
.82076
.26029
37717
.355.82
.42068 | 04431
.00164
.17386
20061
84640
.31517
30237
57590
.40651 | .23107
07652
.31176
.21515
26141
.76788
.25897
52602
.23046 | -18841
-12473
-14856
-25785
-21039
-87189
-32662
-47653
-22540 | | GB(N),N-1, | 102
.34804
-00711
.02837
.16655
-16457
-26467
.30754
-26491
-36931
-41463
140
.11201
-07682
.04881 | . 26662
04619
.09167
.19242
22977
.75482
.25917
42492
.21981 | .22501
08927
01566
.21033
20544
85730
.32132
35241
28622 | .15289
.21414
-10785
.67146
.24575
-30357
.81250
.25953
-45471 | .06957
.17055
-15652
-54072
.29642
-23553
-e8460
.30996
-46205 | 00262
.09320
.19354
19039
.82076
.26029
37717
.355 82
.42068 | 04431
.00164
.17386
20061
84640
.31517
30237
57590
.40651 |
.23107
07652
.31176
.21515
26141
.76788
.25897
52602
.23046 | .18841
12473
14856
.25785
21039
87189
.32662
47653
22540 | | GB(N),N-1,
.38891
.03214
.11427
.20528
-14513
.86221
.25593
-34101
.76400
.39696
-40066
GW(N),N-1,
.40586
-07496
.06237
.11296 | .34804
00711
.02837
.16655
16434
80467
.30754
26491
81606
.38931
41463
140
11201
07682
.04881
.08307 | . 26662
04619
.09167
.19242
22977
.75482
.25917
42492
.21981 | .22501
08927
01566
.21033
20544
85730
.32132
35241
28622 | .15289
.21414
-10785
.67146
.24575
-30357
.81250
.25953
-45471 | .06957
.17055
-15652
-54072
.29642
-23553
-88460
.30996
-46205 | 00262
.09320
.19354
19039
.82076
.26029
37717
.355 82
.42068 | 04431
.00164
.17386
20061
84640
.31517
30237
57590
.40651 | .23107
-07652
.31176
.21515
-26141
.76768
.25897
-52602
.23046 | -18841
-12473
-14856
-25785
-21039
-87189
-32662
-47653
-22540
-06297
-07885
-11535
-077560 | | GB(N),N-1, | .34804
00711
.02837
.16655
16434
80467
.30754
86606
.38931
41463
140
.11201
07682
.04881
.08307
06923 | . 26662
04619
.09167
.19242
22977
.75482
.25917
42492
.21981
.10908
07345
.03820
.06381
.53529 | .22501
08927
01566
.21033
20544
85730
.32132
35241
28622 | .15289
.21414
-10785
.67146
.24575
-30357
.81250
.25953
45471 | .06957
.17055
-15652
-54072
.29642
-23553
-88480
.36996
-46205 | 00262
.09320
.19354
19039
.82076
.26029
37717
.355 82
.42068
.01515
.15215
.01053
04043
.09268 | 04431
.00164
.17386
20061
84640
.31517
30237
57590
.40651
01121
.11094
.00685
06158 | .23107
-07652
.31176
.21515
-26141
.76768
.25897
-52602
.23046 | -18841
-12473
-14856
-25785
-21039
-87189
-32662
-47653
-22540
-06297
-07885
-11535
-07883 | | GB(N),N-1, .38891 .03214 .11427 .2C528 -14513 .66221 .25593 -34101 .76400 .39696 -40066 GW(N),N-1, .40586 -07496 .06237 .11296 -0.7244 .03926 | 102
.34804
00711
.02837
.16655
16436
26491
86606
.38931
41463
140
.11201
07682
.04881
.08307
06923
.03106 | . 26662
04619
.09167
.19242
22977
.75482
.25917
42492
.21981
.10908
07345
.03820
.063821
.53529
.02383 | .22501
08927
01566
.21033
20544
85730
.32132
35241
28622
07025
.02920
.04301
.25682
.01713 | .15289
.21414
-10785
.67146
.24575
-30357
.81250
.25953
-45471
.05991
.48639
.02199
.01885
.16258
.01050 | .06957
.17055
-15552
-54072
.29642
-23553
-88460
.30996
-46205 | 00262
.09320
.19354
19039
.82076
.26029
37717
.35582
.42068
.01515
.15215
.01053
04043
.09268
.41944 | 04431
.00164
.17386
20061
84640
.31517
30237
57590
.40651
01121
.11094
.00685
06158 | -23107
-07652
-31176
-21515
-26141
-76788
-25897
-52602
-23046
-04241
-09135
-41556
-07387
-05996
-11408 | -18841
-12473
-14856
-25785
-21039
-87189
-32662
-47653
-22540
-06297
-07885
-11535
-07560
-04839
-08391 | | GB(N),N-1, | 102
.34804
00711
.02837
.16655
16436
80467
.30754
26491
81606
.38931
41463
140
.11201
07682
.04881
.08307
06923
.03106
.04347 | . 26662
04619
.09167
.19242
22977
.75482
.25917
42492
.21981
.10908
07345
.03820
.06381
.53529
.02383 | .22501
08927
01566
.21033
20544
85730
.32132
35241
28622
.07923
07025
.02920
.04301
.25682
.01713
008c2 | .15289
.21114
-10785
.67146
.24575
-30357
.81250
.25953
-45471
.05991
.48639
.02199
.01885
.16258
.01050
-04022 | .06957
.17055
-15652
-54072
.29642
-23553
-88460
.30996
-46205 | 00262
.09320
.19354
19039
.82076
.26029
37717
.355 82
.42068
.01515
.15215
.01053
04043
.09268
.41944
07343 | 04431
.00164
.17386
20061
84640
.31517
30237
57590
.40651
01121
.11094
.00685
06158
.07792
.11652
07528 | .23107
07652
.31176
.21515
26141
.76788
.25897
52602
.23046 | -18841
-12473
-14876
-25785
-21039
-87189
.32662
-47653
-22540
-06297
.07885
.11535
-07560
.04839
-048391
-06864 | | GB(N),N-1, | .34804
00711
.02837
.16655
16434
80467
.30754
26491
81606
.38931
41463
140
.11201
07682
.04881
.08307
06923
.03106
.04347
.26856 | . 26662
04619
.09167
.19242
22977
.75482
.25917
42492
.21981
.10908
07345
.03820
.06381
.53529
.02383
.01912
.16958 | .225010892701566 .210332054485730 .321323524128622 .0792307025 .02920 .04301 .25682 .01713008c2 .11956 | .15289
.21414
-10785
.67146
.24575
-30357
.81250
.25953
-45471
.05991
.48639
.02199
.01885
.16258
.01050
-04022
.09570 | .06957
.17055
-15652
-54072
.29642
-23553
-88460
.30996
-46205
.03911
.23640
.01639
-00019
.11519
.06126
.08000 | 00262
.09320
.19354
19039
.82076
.26029
37717
.355.82
.42068
.01515
.15215
.01053
04043
.09268
.41944
07343 | 04431
.00164
.17386
20061
84640
.31517
30237
57590
.40651
01121
.11094
.00685
06158
.07792
.11652
07528 | .23107
-07052
.31176
.22515
-26141
.76788
.25897
-52602
.23046
-04241
.09135
.41556
-07387
.05996
.11408 | -18841
-12473
-14856
-25785
-21039
-87189
-32662
-47653
-22540
-06297
-07885
-11535
-07560
-04839
-08391
-06864
-03016 | | GB(N),N-1, | 102
.34804
00711
.02837
.16655
16436
80467
.30754
26491
81606
.38931
41463
140
.11201
07682
.04881
.08307
06923
.03106
.04347 | . 26662
04619
.09167
.19242
22977
.75482
.25917
42492
.21981
.10908
07345
.03820
.06381
.53529
.02383 | .22501
08927
01566
.21033
20544
85730
.32132
35241
28622
.07923
07025
.02920
.04301
.25682
.01713
008c2 | .15289
.21114
-10785
.67146
.24575
-30357
.81250
.25953
-45471
.05991
.48639
.02199
.01885
.16258
.01050
-04022 | .06957
.17055
-15652
-54072
.29642
-23553
-88460
.30996
-46205 | 00262
.09320
.19354
19039
.82076
.26029
37717
.355 82
.42068
.01515
.15215
.01053
04043
.09268
.41944
07343 | 04431
.00164
.17386
20061
84640
.31517
30237
57590
.40651
01121
.11094
.00685
06158
.07792
.11652
07528 | .23107
07652
.31176
.21515
26141
.76788
.25897
52602
.23046 | -18841
-12473
-14876
-25785
-21039
-87189
.32662
-47653
-22540
-06297
.07885
.11535
-07560
.04839
-048391
-06864 | | .17161 | .12008 | .09524 | .07872 | .05813 | .04455 | .03389 | .02481 | .01746 | .01148 | |-------------------|-------------|------------|------------|-----------|------------|-----------|----------|-----------------|---------| | .00648 | .00408 | .42013 | .11693 | .11464 | .08490 | .06607 | .04568 | .02158 | 00560 | | 03799 | 05974 | 07270 | 07512 | 07189 | 06866 | .54036 | .25421 | .15678 | -10394 | | .07631 | .05714 | .034 89 | .02304 | .01528 | .00921 | .00465 | .00158 | .00016 | .00001 | | | | ***** | | | | | | | | | HE ITERATIO | ON CONVERGE | ED AFTER | 11 ITERAT | IONS WITH | A TEST CRI | TERION OF | •0010000 | | | | ME SOLUTION | | REVIOUS IT | ERATION IS | | | | | | | | .38891 | .34804 | . 277 24 | .19549 | .12470 | .08362 | . 29875 | .25751 | .18608 | .10359 | | .03214 | 00911 | .26661 | .225 CO | .15289 | .06957 | 00262 | 04430 | .23106 | .18840 | | .11427 | .02838 | 04618 | 08927 | .21413 | .17054 | •09320 | .00164 | 07852 | 12472 | | .20526 | .16654 | .C9167 | 01566 | 10784 | 15650 | •19352 | .17383 | .31169 | 14848 | | 14511 | 18431 | •19239 | .21028 | .67120 | 54046 | 19034 | 20058 | .21513 | .25779 | | .86181 | 80427 | 22970 | 20542 | .24571 | .29634 | .82034 | 84597 | 26133 | 21036 | | .25589 | .30744 | .75439 | 85687 | 30348 | 23549 | . 26024 | .31506 | .78743 | 87144 | | 34090 | 26486 | .25911 | .32120 | .81203 | 88413 | 37705 | 30231 | . 25889 | .32649 | | .76355 | 86561 | 42479 | 35234 | .25942 | .30980 | 35558 | 57566 | 527 F6 | 47643 | | .39682 | .38915 | .21969 | 28610 | 45455 | 46191 | .42055 | .40636 | .23035 | 22529 | | 40050 | 41450 | | • • • • • | | | | | | | | GW(N) . N = 1 . 1 | | | | | | | | | | | -405P6 | .11201 | .10908 | .07923 | .05991 | .03911 | .01515 | 01121 | 04241 | 06297 | | 07496 | 07682 | 07345 | 07025 | .48631 | . 23635 | •15212 | .11092 | .09133 | .07883 | | .06235 | .04879 | .03818 | .02919 | .02198 | .01638 | .01053 | .00684 | .41556 | .11535 | | .11296 | .08307 | .06381 | .04301 | .01885 | 00819 | 04043 | 06158 | 07387 | 07580 | | 07244 | 06923 | .53522 | .25679 | .16256 | .11518 | • 09267 | .07790 | » 0599 5 | .04838 | | .03926 | .03105 | .02382 | .01713 | .01050 | .006 82 | 41944 | .11652 | .11408 | .08391 | | 06448 | .04347 | .01912 | 00802 | 04022 | 06126 | 07343 | 07528 | C7187 | 06864 | | 56092 | 26853 | .16956 | .11954
 .09569 | .07999 | .06084 | .04850 | .03878 | .03015 | | .02768 | .01598 | .00961 | .00620 | .41971 | 11659 | .11412 | .06392 | .06446 | .04345 | | .01913 | 00791 | 03989 | 06072 | 07274 | C7455 | 07119 | 06801 | .57115 | . 27268 | | .17159 | 12007 | .09523 | .07872 | .05813 | .04454 | .03388 | .02481 | .01746 | .01148 | | .00648 | .00408 | 42013 | .11693 | .114£4 | .0 84 90 | .06607 | .04568 | .02158 | 00560 | | 03799 | 05974 | 07270 | 07512 | 07169 | 06866 | .54033 | .25419 | .15677 | .10393 | | .07631 | .05713 | .03489 | .02304 | .01528 | .00920 | .00465 | .0015€ | .0C016 | .00001 | | THE SOLUTION | N AT THE D | RESENT TIE | PATION IS | | | | | | | | G8(N),N=1, | | | | | | | | | | | .38891 | .34804 | .27724 | .19549 | .12469 | •08362 | .29875 | .25751 | .18608 | .10359 | | .03214 | 00911 | .26662 | 22501 | .15289 | .06957 | 00262 | 04431 | .23107 | .18841 | | .11427 | .02837 | 04619 | 08927 | .21414 | 17055 | .09320 | 00164 | 07852 | 12473 | | 20528 | .16655 | 09167 | 01566 | 10785 | 15652 | .19354 | .17386 | .31176 | 14856 | | 14513 | 18434 | .19242 | .21033 | .67146 | 54072 | 19039 | 20061 | .21515 | .25785 | | .86221 | 80467 | 22977 | 20544 | .24575 | 29642 | .82076 | 84640 | 26141 | 21039 | | .25593 | •30754 | .75482 | 85730 | 30357 | 23553 | .26029 | •31517 | •7878 8 | 87189 | | 34101 | 26491 | .25917 | •32132 | .81250 | 88460 | 37717 | 30237 | .25897 | .32662 | | .76400 | 86606 | 42492 | 35241 | .25953 | .30996 | .35582 | 57590 | 52802 | 47653 | | .39696 | .38931 | .21981 | 28622 | 45471 | 46205 | 42068 | +0651 | .23046 | 22540 | | | | 16 4704 | - 45 00 55 | -017717 | | 4-45-000 | | | 70-77 | | 40086 | 41463 | | | | | | | | | | GW(N),N=1,1 | 140 | | | | | | | | | |-------------|--------|--------|---------|------------|------------|---------|--------|---------|--------| | •40586 | .11201 | .10908 | .07923 | .05991 | .03911 | .01515 | 01121 | 04241 | 06297 | | 07496 | 07682 | 07345 | 07025 | • 4 86 3 9 | .23640 | .15215 | .11094 | .09135 | .07885 | | .06237 | .04881 | .03820 | •02920 | •02199 | •01639 | .01053 | .00685 | .41556 | .11535 | | •11296 | .08307 | .06381 | .04301 | .01885 | 00819 | 04043 | 06158 | 07387 | 07580 | | 07244 | 06923 | .53529 | .25682 | .16258 | •11519 | •09268 | .07792 | .05996 | .04639 | | •03926 | .03106 | .02383 | .01713 | .01050 | .00682 | . 41944 | .11652 | .11408 | .08391 | | .06448 | .04347 | •01912 | 00802 | 04022 | 06126 | 07343 | 07528 | 07187 | 06864 | | .5£098 | .26856 | .16958 | .11956 | .09570 | •0 E O O O | .06085 | .04850 | .03879 | .03016 | | .02268 | .01598 | .00961 | .00620 | •41971 | .11659 | .11412 | .06392 | .06446 | 04345 | | .01913 | 00791 | 03989 | 0 60 72 | 07274 | 07455 | 07119 | 06801 | .57119 | .27270 | | .17161 | .12008 | .09524 | .07872 | .05813 | .04455 | .03389 | .02481 | .01746 | .01148 | | •00648 | .00408 | .42013 | .11693 | .11464 | .08490 | .06607 | .04568 | .02158 | 00560 | | 03799 | 05974 | 07270 | 07512 | 07189 | 06866 | .54036 | .25421 | .15678 | .10394 | | •07631 | .05714 | .03489 | .02364 | .01528 | .00921 | .00465 | .00158 | . CCC16 | .00001 | --------- #### VELOCITIES ON BODY, MACH- .600 ALPHA- 4.000 | PANEL | Source | AXIAL | LATERAL | VERTICAL | NORMAL | PRESSURE | |-------|----------------------------|----------|-----------|------------|-----------------|---------------| | NO. | ST RE NG T H | VELDCITY | VELOCITY | VE LOCITY | VELOCITY | COE FFIC IENT | | 1 | • 38891 | 125 44 | .08865 | 25662 | • 29 2 2 4 | .20012 | | 2 | .34804 | 11691 | •21724 | 14303 | .27465 | •17456 | | 3 | • 27724 | 10215 | .23775 | .01051 | .24420 | •13692 | | 4 | .19549 | 08510 | .16961 | .11966 | .20904 | .10372 | | 5 | .12469 | 07034 | •08096 | . 155 17 | .17858 | .08373 | | 6 | .08382 | 061 F2 | •02050 | .15073 | • 161 CO | .07585 | | 7 | .29875 | 05137 | .06986 | 1 86 98 | .20386 | .08677 | | 8 | .25751 | 04602 | .16512 | 09138 | .18598 | .06723 | | 9 | .18608 | 03674 | .16467 | .02962 | .15501 | •03996 | | 10 | .10359 | 02602 | .09435 | .09904 | .11924 | .01874 | | 11 | .C3214 | 01674 | • 02449 | •09825 | . C882 7 | .00917 | | 12 | CC911 | 01138 | 00046 | .07205 | .07038 | .00734 | | 13 | •26662 | 02134 | • 06230 | 15782 | .16987 | .03546 | | 14 | .22501 | 01715 | .14409 | 06938 | . 15191 | .01805 | | 15 | • 15289 | 00988 | .13502 | .03857 | . 12081 | 00549 | | 16 | • GE957 | 00147 | •06360 | .09183 | .06489 | 02230 | | 17 | 00262 | •005 81 | .00126 | .07607 | . 05 379 | 02796 | | 18 | 04431 | .01002 | 00912 | .04081 | .03583 | 02747 | | 19 | .23107 | 00457 | .05429 | 12407 | .13390 | .CC6 08 | | 20 | .18841 | OC131 | -12142 | 04271 | .11589 | 00799 | | 21 | • 11427 | .00441 | .10201 | .05162 | . 08 4 69 | 02901 | | 22 | .02837 | .01109 | .02803 | . 08669 | .04866 | 04248 | | 23 | 04619 | .01694 | 02648 | • 0 52 8 4 | .01746 | 04476 | | 24 | 06927 | .02033 | 01964 | .00610 | 00055 | 04208 | | 25 | . 21414 | 00388 | .05029 | 10273 | .11231 | .00899 | | 26 | .17055 | OCO78 | .10983 | 02358 | .09428 | 00777 | | 27 | • C9 320 | .00555 | •06325 | .06592 | .06304 | 03148 | | 28 | .00164 | .01406 | .00422 | .09098 | .02697 | 04902 | | 29 | C7852 | .02196 | 04760 | .04295 | 00427 | 05413 | | 30 | 12473 | .02653 | 02 813 | 01434 | 02231 | 05238 | | 31 | .2052 8 | 01693 | .04601 | 09155 | •10065 | •03588 | | 32 | . 16655 | 02070 | .10152 | 01467 | .Ce281 | .03248 | | 33 | . C9 167 | 01898 | .67529 | .08413 | •05156 | .01304 | | 34 | 01566 | .00818 | 01407 | .11339 | .01547 | 04507 | | 35 | 7.10785 | .02926 | C6 £85 | 04591 | 01578 | 07174 | | 36 | 15652 | .03646 | 03554 | 02425 | 03382 | 07207 | | 37 | .19354 | 026 69 | .03328 | 08656 | •09288 | •05669 | | 38 | .17386 | 04094 | .06459 | 03979 | .07483 | .08037 | | 39 | .31176 | 06351 | .05640 | .04841 | . C4356 | •11150 | | 40 | 14856 | •07034 | 03450 | ·1646B | •00749 | 19311 | | 41 | 14513 | •06026 | 07370 | .04225 | 02378 | 13529 | | 42 | 18434 | .05551 | 03757 | 03178 | 04183 | 11069 | | 43 | 19242 | 01864 | 401809 | 08171 | .08391 | •04139 | | 44 | .21033 | 02439 | .02512 | 06745 | -06585 | .05255 | | 77 | • 6 1 0 3 3 | | • 0Z 31 Z | | •00203 | •02/22 | | 45 | - 67146 | 01691 | • 06 751 | •11953 | .03455 | - 00300 | |----|-----------------|---------|------------|-----------|----------|---------| | 46 | 54072 | •09835 | 05145 | | | 00208 | | 47 | | | | •19266 | 00146 | 26591 | | 46 | 19039 | .08612 | 04349 | 00083 | 03277 | 17809 | | | 20061 | •07311 | C2785 | 04390 | 05 08 2 | 14582 | | 49 | . 21 51 5 | 00194 | .01320 | 07745 | .07825 | •00550 | | 50 | . 25 785 | .00245 | •01698 | 06818 | .C6019 | 00032 | | 51 | •86221 | .01904 | .07828 | .17982 | •02666 | 10097 | | 52 | 80467 | .10223 | 05759 | •19178 | 60711 | 27421 | | 53 | 22977 | . 08667 | 01562 | 03741. | 03644 | 17406 | | 54 | 20544 | •07564 | 01567 | 05344 | 05650 | 15020 | | 55 | • 24575 | .01219 | .01652 | 07119 | •07297 | 01983 | | 56 | .29642 | .02026 | .03178 | 04604 | .05491 | 03740 | | 57 | • £2076 | •03640 | .0797C | .20554 | •02358 | 14917 | | 58 | 8 464 C | .08555 | -,05324 | .15273 | 01238 | 22094 | | 59 | 26141 | .07592 | 00428 | 05693 | 04371 | 15046 | | 60 | 21 63 9 | .06974 | 00764 | 06145 | 05177 | 13752 | | 61 | . 25593 | .01548 | • Ó1 E O B | 05730 | .06014 | 02667 | | 62 | .36754 | •01928 | .03850 | 02081 | •04208 | 03773 | | 63 | • 754 82 | .02817 | • 07326 | • 232 t 7 | .01075 | 14698 | | 64 | 85730 | .04726 | 06584 | .14702 | 02521 | 14116 | | 65 | 30357 | •05413 | 01074 | 06977 | 05653 | 10516 | | 66 | 23553 | .05480 | 00735 | 07567 | 074 to | 10652 | | 67 | .26029 | .01302 | .01617 | 04821 | •05096 | 62196 | | 68 | .31517 | .01223 | • C3229 | 01396 | •03290 | 02360 | | 69 | 78788 | .01366 | .06774 | .24762 | .00157 | 12642 | | 70 | 67189 | .00833 | 09144 | .20791 | 03437 | 09643 | | 71 | 34101 | .02860 | 02867 | 06473 | 06570 | 05361 | | 72 | 26491 | .03507 | 01196 | 08412 | C8376 | 06628 | | 73 | . 25917 | .01774 | .01266 | 03716 | •03965 | 03198 | | 74 | . 32 1 3 2 | .01892 | .02491 | 00489 | .02159 | -,03794 | | 75 | .01250 | .02684 | .0oe75 | .29706 | 00973 | 18550 | | 76 | 88460 | .00225 | 12062 | .27344 | 04566 | 13040 | | 77 | 37717 | .01522 | 05392 | 05558 | 07698 | 02877 | | 78 | 30237 | 02015 | C2082 | 09343 | 09504 | 03661 | | 79 | . 25 89 7 | .02866 | .01083 | 01656 | .02013 | 05579 | | 60 | . 32662 | .03057 | . 02 489 | .02399 | .00209 | 06607 | | 81 | .76400 | .03954 | . C7415 | .39694 | 02921 | 29093 | | 82 | 86606 | 00918 | 16583 | . 36867 | 06512 | 19317 | | 83 | 42 49 2 | •000 £2 | 08921 | 04734 | 09 6 4 1 | 00522 | | 84 | 35241 | .00369 | C3335 | 10987 | 11445 | 06522 | | 85 | 25953 | •0 2271 | .01827 | • C41 68 | 03307 | 05344 | | 86 | •30996 | .02292 | .05348 | .12930 | 05104 | 08325 | | 87 | •35582 | .01788 | .04432 | .49148 | 08217 | 33731 | | 68 | 57590 | 04591 | 23553 | . 438 61 | 11801 | 21525 | | 89 | 52 8 02 | 05070 | 19274 | 01202 | 14914 | .06332 | | 90 | 47653 | 05029 | 06903 | 15014 | 16711 | •09221 | | 91 | . 39696 | 01110 | .06282 | 01835 | .03329 | .02031 | | 92 | .36931 | 01307 | .15912 | •13692 | .01524 | 03714 | | 02 | 21981 | 02010 | • 1001 R | 42308 | 01600 | 21406 | | | | | | 1 Un | | 41400 | | 94 | 28622 | 03459 | 16401 | •41542 | 05205 | 18640 | |-----|--------|--------|---------|--------|----------|---------| | 95 | 45471 | 04158 | 20553 | .08967 | 08330 | •01 646 | | 96 | 46205 | 04352 | 07976 | 08207 | 10134 | .08391 | | 97 | 42068 | .00225 | .07010 | 05095 | •06736 | 00489 | | 9.6 | •40651 | 00259 | •17 EO1 | .10830 | .04930 | 05310 | | 69 | .23046 | 01128 | .12454 | .39511 | . 018 04 | 20064 | | 100 | 22540 | 02149 | 12444 | .39472 | 01 804 | 18092 | | 101 | 40066 | 03016 | 17770 | .10798 | 04930 | .00097 | | 102 | 41463 | 03499 | 06996 | 05099 | 06736 | .06863 | # NACA RH 151FOT TRANSONIC WING-BODY DEFINITION NACA TRANSONIC WING-BODY PANELING #### INTEGRATION OF THE PRESSURE DISTRIBUTION ON THE BODY | | MACH= | .6000 ALI | PHA= 4.0000 | | | | | | | | | |-------|----------|-----------|---------------|-------------
-----------|----------|---------------|----------------|--------|-------------------|-------| | POINT | × | Y | z | X/L | Y/0 | 2/0 | CP | CH | CA | CM | POINT | | 1 | 1.33333 | .08050 | 30043 | 1.33333 | .08050 | 30043 | .20012 | .04833 | .01167 | .89863 | 1 | | 2 | 1.33333 | •21993 | 21993 | 1.33333 | ·• 21993 | 21993 | .17456 | •03D86 | .01016 | .57384 | Z | | 3 | 1.33333 | •30043 | 08050 | 1.33333 | .30043 | 08050 | .13692 | .00886 | .00799 | .16475 | 3 | | 4 | 1.33333 | .30043 | .08050 | 1.33333 | .30043 | .08050 | .10372 | 00671 | .00605 | 12480 | 4 | | 5 | 1.33333 | .21993 | .21993 | 1.33333 | .21993 | .21993 | .08373 | 01480 | .00488 | 27525 | 5 | | 6 | 1.33333 | .0 80 50 | .30043 | 1.33333 | •08050 | .30043 | .07585 | 01832 | .00442 | 34061 | 6 | | 7 | 3.65426 | .18017 | 67239 | 3.65426 | .18017 | 67239 | .08677 | .09091 | -01306 | 1.47725 | 7 | | 8 | 3.65426 | • 49223 | 49223 | 3.65426 | .49223 | 49223 | .06723 | .05156 | .01012 | .83785 | 8 | | 9 | 3.65426 | •67239 | 18017 | 3.65426 | .67239 | 1 80 17 | .03996 | .01122 | .0060Z | .18230 | 9 | | 10 | 3.65426 | •67239 | .18017 | 3.65426 | •67239 | .18017 | .01674 | C0526 | .00282 | 08551 | 10 | | 11 | 3.65426 | •4 92 23 | . 49223 | 3.65426 | .49223 | .49223 | .00917 | 00703 | .00138 | 11427 | 11 | | 12 | 3.65426 | .18017 | .67239 | 3.65426 | .16017 | .672.39 | .00734 | 00769 | .00110 | 12497 | 12 | | 13 | 6.57487 | •27075 | -1.01047 | 6.57487 | • 27075 | -1.01047 | . 03546 | .05718 | .CG614 | .76145 | 13 | | 14 | 6.57487 | •73971 | 73971 | 6.57487 | •73971 | 73971 | .01805 | .02131 | .00312 | .2 6 3 7 2 | 14 | | 15 | 6.57487 | 1.01047 | 27075 | 6.57487 | 1. C1047 | 27075 | 00549 | 00237 | 00095 | 03156 | 15 | | 16 | 6.57487 | 1.01047 | •27075 | 6.57487 | 1.01047 | .27075 | 02230 | .00964 | 00386 | .12633 | 16 | | 17 | 6.57487 | .73971 | .73971 | 6.57487 | .73971 | .73971 | 02796 | .03300 | 00484 | .43949 | 17 | | 18 | 6.57487 | .27075 | 1. C1047 | 6.574 67 | .27075 | 1.01047 | 02747 | .04429 | 00475 | .5€977 | 18 | | 19 | 9.53882 | .33567 | -1.25272 | 9.53882 | .33567 | -1.25272 | .00708 | .01623 | .00113 | .16840 | 19 | | 20 | 9.53882 | •91706 | 91706 | 9.53882 | .91706 | 91706 | 00799 | 01176 | 00111 | 12202 | 20 | | 21 | 9.53882 | 1.25272 | 33567 | 9.53882 | 1.25272 | 33567 | 02901 | 01562 | 00404 | 16208 | 21 | | 22 | 9.53882 | 1.25272 | .33567 | 9.53862 | 1.25272 | . 33567 | 04248 | .02288 | 00592 | .23737 | 22 | | 23 | 9.53882 | .91706 | •91 70 £ | 9 . 5 38 82 | . 91 70 6 | .91706 | 04476 | •0658 6 | 00£24 | . 6 63 2 2 | 23 | | 24 | 9.53082 | •33567 | 1.25272 | 9.53882 | • 33567 | 1.25272 | C4208 | .08457 | 00587 | .87740 | 24 | | 25 | 12.01045 | | -1.39134 | 12.01045 | .37281 | -1.39134 | .00899 | .01340 | .00063 | .10617 | 25 | | 26 | 12.01045 | 1.01854 | -1.01854 | 12.01045 | 1.01854 | -1.01954 | 00777 | 00847 | 00054 | 06716 | 26 | | 27 | 12.01045 | 1.39134 | 37281 | 12.01045 | 1.39134 | 37281 | 03148 | 01257 | 00219 | 09964 | 27 | | 28 | 12.01045 | 1.39134 | .37281 | 12.01045 | 1.39134 | .37281 | 04902 | .01958 | 00342 | .15518 | 28 | | 29 | 12.01045 | 1.01854 | 1.01854 | 12.01045 | 1.01854 | 1.01854 | 05413 | .05908 | 60377 | .46815 | 29 | | 30 | 12.01045 | .37281 | 1.39134 | 12.01045 | .37281 | 1.39134 | 05238 | .07808 | 00365 | .61877 | 30 | | 31 | 13.66576 | •3 90 17 | -1.45612 | 13.66576 | . 39017 | -1.45612 | .03588 | .03709 | .C0129 | .23306 | 31 | | 32 | 13.66576 | 1.06596 | -1.06596 | 13.66576 | 1.06596 | -1.06596 | .03248 | .02458 | .00117 | .15448 | 32 | | 33 | 13.66576 | 1.45612 | 39017 | 13.66576 | 1.45612 | 39017 | .01304 | .00361 | .00047 | .02270 | 33 | | 34 | 13.66576 | 1.45612 | 20017 | 13-66576 | 1.45412 | 39017 | 04507 | -01249 | 60162 | -07845 | 34 | | 35 | 13.66576 | 1.06596 | 1.06596 | 13.66576 | 1.06596 | 1.06596 | 07174 | .05430 | 00258 | .34117 | 35 | |----|----------------------|--------------------|-------------------|------------------|----------|----------|-----------------|-------------------|-------------|------------------|-----| | 36 | 13.66576 | •39017 | 1,45612 | 13:46576 | .39017 | 1,45612 | 07207 | .07451 | 00259 | .46817 | 36 | | 37 | 15.03022 | •40057 | -1.49497 | 15.03022 | •40057 | -1.49497 | •05669 | .06380 | •00169 | .31456 | 37 | | 38 | 15.03022 | 1.09439 | -1.09439 | 15.03022 | 1.09439 | -1.09439 | .08037 | .06622 | .00240 | 32649 | 38 | | 39 | | | 40057 | 15.03022 | 1.49497 | 40057 | .11150 | •03363 | .00240 | .16579 | 39 | | 40 | 15.03022
15.03022 | 1.49497
1.49497 | • 40057 | 15.03022 | 1.49497 | •40057 | 19311 | •05824 | 00576 | .28714 | 40 | | 41 | 15.03022 | | 1.09439 | 15.03022 | 1.09439 | 1.09439 | 13529 | .11148 | 00404 | .54961 | 41 | | | | 1.09439 | | 15.03022 | | 1.49497 | | | | | 42 | | 42 | 15.63022 | .40057 | 1,49497 | | 40057 | -1.52375 | 11069
.04139 | •12459
•04833 | 00330 | .61424
.17046 | 43 | | 43 | 16.44679 | .40829 | -1.52375 | 16.44679 | . 4CB 29 | | | | .00083 | | | | 44 | 16.44679 | 1.11546 | -1.11546 | 16.44679 | 1.11546 | -1.11546 | .05255 | •04492 | .00105 | .15843 | 44 | | 45 | 16.44679 | 1.52375 | 408 29 | 16.44679 | 1.52375 | 40829 | 00208 | 00065 | 00004 | 00229 | 45 | | 46 | 16.44679 | 1.52375 | 40829 | 16.44679 | 1.52375 | 46829 | 26591 | . CB 320 | 00533 | .29344 | 46 | | 47 | 16.44679 | 1.11546 | 1.11546 | 16.44679 | 1.11546 | 1.11546 | 17809 | .15223 | 00357 | •53694 | 47 | | 48 | 16.44679 | .40829 | 1.52375 | 16.44679 | .40829 | 1.52375 | 14562 | .17028 | 00292 | .60057 | 48 | | 49 | 17.87616 | .41337 | -1.54272 | 17.87616 | .41337 | -1.54272 | .00 650 | .01005 | .00011 | .02117 | 49 | | 50 | 17. 676 16 | 1.12935 | -1.12935 | 17.87616 | 1.12935 | -1.12935 | 00032 | 00028 | 00000 | 00059 | 50 | | 51 | 17.87616 | 1.54272 | ~.41337 | 17.8761 6 | 1.54272 | 41337 | 10097 | 03199 | 00135 | 06738 | 51 | | 52 | 17.87616 | 1.54272 | . 41337 | 17.87616 | 1.54272 | .41337 | 27421 | •0 E 6 8 6 | 06366 | .16297 | 52 | | 53 | 17.87616 | 1.12935 | 1.12935 | 17.87616 | 1.12935 | 1.12935 | 17406 | . 15064 | 00232 | .31731 | 53 | | 54 | 17.07616 | •41337 | 1.54272 | 17.87616 | .41337 | 1.54272 | 15020 | .17757 | 00200 | .37405 | 54 | | 55 | 19.30559 | .41642 | -1.55412 | 19.30559 | .41642 | -1.55412 | 01983 | 02362 | 00014 | 01619 | 55 | | 56 | 19.30559 | 1.13769 | -1.13769 | 19.30559 | 1.13769 | -1.13769 | 03740 | 03261 | 00026 | 02235 | 56 | | 57 | 19.30559 | 1.55412 | 41642 | 19.3055 9 | 1.55412 | 41642 | 14917 | 047€0 | CO103 | 03263 | 57 | | 58 | 19.30559 | 1.55412 | .41642 | 19.30559 | 1.55412 | •41642 | 22094 | .07051 | 00153 | .04832 | 58 | | 59 | 19.30559 | 1.13769 | 1.13769 | 19.30559 | 1.13769 | 1.13769 | 15046 | .13118 | 00104 | . C8991 | 59 | | 60 | 19.30559 | .41642 | 1.55412 | 19.30559 | •41642 | 1.55412 | 13752 | .16378 | 00095 | .11225 | 60 | | 61 | 20.72176 | •41615 | -1.55308 | 20.72176 | 41615 | -1.55308 | 02667 | 03119 | • C0053 | .02215 | 61 | | 62 | 20.72176 | 1.13693 | -1.13693 | 20.72176 | 1.13693 | -1.13693 | 03773 | 03230 | .00033 | •02293 | 62 | | 63 | 20.72176 | 1.55308 | 41615 | 20.72176 | 1.55308 | 41615 | 14698 | 04605 | .00129 | .03270 | 63 | | 64 | 26.72176 | 1.55308 | • 41615 | 20.72176 | 1.55308 | .41615 | 14116 | •04423 | .00124 | 03141 | 64 | | 65 | 20.72176 | 1.13693 | 1.13693 | 20.72176 | 1.13693 | 1.13693 | 10516 | .09002 | .00092 | 06392 | 65 | | 66 | 20.72176 | .41615 | 1.55308 | 20.72176 | .41615 | 1.55300 | 10652 | .12456 | .00093 | 08845 | 66 | | 67 | 22.21036 | .41149 | -1.53568 | 22.21036 | .41149 | -1.53568 | 02196 | 02647 | .00048 | .06218 | 67 | | 68 | 22.21036 | 1.12420 | -1.12420 | 22.21036 | 1.12420 | -1.12420 | 02380 | 02258 | .00053 | .04932 | 68 | | 69 | 22.21036 | 1.53568 | ~.41149 | 22.21036 | 1.53568 | 41149 | 12642 | 04391 | .00279 | •09590 | 69 | | 70 | 22.21036 | 1.53568 | .41149 | 22:21036 | 1.53568 | .41149 | ;096 43 | .03349 | .00213 | 07315 | 70 | | 71 | 22.21036 | 1.12420 | 1.12420 | 22.21036 | 1.12420 | 1.12420 | 05361 | .05086 | .00118 | 11110 | 71 | | 72 | 22.21036 | •41149 | 1.53568 | 22.21036 | • 41149 | 1.53568 | 06628 | .08590 | .00146 | 18763 | 72 | | 73 | 23.99402 | •40098 | -1 . 49648 | 23.99402 | •40098 | -1.49648 | 03198 | 05129 | .00147 | .20264 | 73 | | 74 | 23.99402 | 1.09550 | -1.09550 | 23.99402 | 1.09550 | -1.09550 | 03794 | 04455 | .00175 | .17600 | 74 | | 75 | 23.99402 | 1.49648 | 40098 | 23.99402 | 1.49648 | 40099 | 18550 | 07971 | .00855 | .31494 | 75 | | 76 | 23.99402 | 1.49648 | . 40098 | 23.99402 | 1.49648 | .40098 | 13040 | .05604 | .00601 | 22140 | 76 | | 77 | 23.99402 | 1.09550 | 1.09550 | 23.99402 | 1.09550 | 1.09550 | 02877 | .03378 | .00133 | 13347 | 77 | | 78 | 23.99402 | •40098 | 1.49648 | 23.99402 | .40098 | 1.49648 | 03661 | .05871 | .00169 | 23198 | 78 | | 79 | 26 • 4 7552 | .37567 | -1.40204 | 26.47552 | .37567 | -1.40204 | 05579 | 12566 | .00616 | .80507 | 79 | | 80 | 26.47552 | 1.02636 | -1.02636 | 26.47552 | 1.02636 | -1.02636 | 06607 | 10893 | .00729 | .69790 | 80 | | 81 | 26.47552 | 1.40204 | 3756 7 | 26.47552 | 1.40204 | 37567 | 29093 | 17557 | .03211 | 1.12487 | 81 | | 82 | 26.47552 | 1.40204 | .3756 7 | 26.47552 | 1.40204 | .37567 | 19317 | .11658 | .02132 | 74689 | 82 | | 03 | 24 47552 | 1 43737 | 1.02424 | 24.47552 | 1 43434 | 72434 | ^^ 522 | .00 84 1 | A 2 0 0 0 4 | 05517 | 8 R | | | | | | | | | | | | | | | 84 | 26.47552 | - 37567 | 1.40204 | 26.47552 | .37567 | 1.40204 | 00522 | .01176 | .00058 | 07536 | 84 | |-----|-----------|----------|----------|----------|---------|----------|---------|--------|---------|----------|-----| | 85 | 30.31362 | .29661 | -1.10698 | 30.31362 | . 29661 | -1.10698 | 05344 | 15592 | .01628 | 1.59004 | 85 | | 86 | 30.31362 | .81036 | 81036 | 30.31362 | .81036 | 81036 | 08325 | 17780 | .02536 | 1.81322 | 86 | | 87 | 30.31362 | 1.10698 | 29661 | 30.31362 | 1.10698 | 29661 | 33731 | 26369 | .10274 | 2.68909 | 87 | | 88 | 30.31362 | 1.10698 | .29661 | 30.31362 | 1.10698 | .29661 | 21525 | .16827 | .06556 | -1.71606 | 88 | |
89 | 30.31362 | .81036 | .81036 | 30.31362 | .81036 | .81036 | .06332 | 13524 | 01929 | 1.37923 | 89 | | 90 | 30.31362 | .29661 | 1.10698 | 30.31362 | .29661 | 1.10698 | .09221 | 26901 | 02809 | 2.74339 | 90 | | 91 | 34.46893 | .21352 | 79688 | 34.46893 | .21352 | 79688 | .02031 | .02598 | 00092 | 37523 | 91 | | 92 | 34.46 693 | •5 83 36 | 58336 | 34.46893 | .58336 | 58336 | -:03714 | 03479 | 00168 | .50242 | 92 | | 93 | 34.46893 | .79688 | 21352 | 34.46393 | • 79688 | 2 13 52 | 21406 | 07339 | .00968 | 1.05978 | 93 | | 94 | 34.46893 | .79688 | • 21352 | 34.46893 | •79688 | .21352 | 18640 | .06391 | · G0843 | 92286 | 94 | | 95 | 34.46693 | .58336 | •58336 | 34.46893 | •58336 | .58336 | .01846 | 01729 | 00083 | .24970 | 95 | | 96 | 34.46893 | .21352 | .79688 | 34.46893 | . 21352 | .79688 | .08391 | 10736 | 00379 | 1.55040 | 96 | | 97 | 37.00000 | .20000 | 74641 | 37.00000 | .20000 | 74641 | 03489 | 00391 | 0.00000 | .06644 | 97 | | 98 | 37.00000 | .54641 | 54641 | 37.00000 | .54641 | 54641 | 05310 | 03110 | 0.00000 | . 52867 | 98 | | 99 | 37.00000 | .74641 | 20000 | 37.00000 | .74641 | 20000 | 20064 | 04301 | 0.00000 | •73115 | 99 | | 100 | 37.00000 | .74641 | .20000 | 37.00000 | .74641 | .Z0000 | 18092 | .03878 | 0.00000 | 65929 | 100 | | 101 | 37.00000 | .54641 | .54641 | 37.00000 | .54641 | .54641 | .00097 | 00057 | 0.00000 | .00963 | 101 | | 102 | 37.00000 | .20000 | .74641 | 37.00000 | .20000 | .74641 | .06863 | 05491 | 0.00000 | .93340 | 102 | # TOTAL COEFFICIENTS ON THE BODY | REFA= | 144.0000 | REFD= | 1.0000 | REFL- | 1.0000 | |---------|----------|-------|--------|-------|--------| | PEFX- | 20.0000 | REFZ= | 0.0000 | | | | MAC P= | .60000 | | | | | | ALPH A. | 4.00000 | | | | | | C N= | .01843 | | | | | | C A= | .0039€ | | | | | | CM• | .06391 | | | | | | CL. | .01811 | | | | | | C D⇒ | .00523 | | | | | | xCP= | 20262 | | | | | | | | | | | | #### VELOCITIES ON WING, MACH- .600 ALPHA- 4.000 | PANEL | VOR TEX | AXIAL | LATERAL | VERTICAL | NORMAL | PRESSURE | |-------|-----------|-----------------|-----------|----------|-----------------|-------------| | NO. | STRENGTH | VELOCITY | VELOCITY | VELOCITY | VELOCITY | COEFFICIENT | | 1 | •40586 | .23130 | 22364 | .50569 | •2791 7 | 82204 | | 2 | • 11201 | •2656 5 | 25713 | .13470 | .06156 | 66020 | | 3 | .10908 | .19087 | 17482 | .07103 | .03184 | 44380 | | 4 | .07923 | .16832 | 14711 | .02848 | .00464 | 37704 | | 5 | .05991 | .15726 | 13140 | .00316 | 01364 | 34492 | | 6 | .03911 | -14639 | 11474 | 02287 | 03299 | 31467 | | 7 | •01515 | . 138 29 | 10258 | 04997 | 05437 | 29301 | | 8 | 01121 | .13109 | 09104 | 07771 | 07683 | 27511 | | 9 | 04241 | .11836 | 07780 | 10758 | 10189 | 24706 | | 10 | Ct 297 | .09946 | 06211 | 12876 | 12087 | 20684 | | 11 | 07496 | .07481 | 04762 | 14195 | 13412 | 15524 | | 12 | 07682 | .04421 | 03227 | 14557 | 13999 | 09132 | | 13 | 07345 | .01414 | 01 59 1 | 14290 | 14038 | 02906 | | 14 | C7025 | 01021 | .C0561 | 13935 | 14038 | .03610 | | 15 | .48639 | 43810 | .48618 | 08659 | 40024 | .46891 | | 16 | .23640 | 19165 | • 22669 | 14443 | 19850 | -30138 | | 17 | • 15 21 5 | 12675 | • 16 16 8 | 140 87 | 16979 | .21451 | | 16 | .11094 | 08008 | .11775 | 12807 | 14272 | .14276 | | 19 | .C9135 | 05324 | .09471 | 11669 | 12518 | .09793 | | 20 | .07885 | 02867 | .07633 | 10209 | 10629 | .05463 | | 21 | · C6237 | .00033 | • 05 59 6 | 08387 | 08509 | .00088 | | 22 | .04881 | .02331 | .03917 | 06248. | 06267 | 04360 | | 23 | •03 f20 | .03490 | .02826 | 03705 | 03750 | 06744 | | 24 | •02920 | .03605 | .02395 | 01749 | 01834 | 07119 | | 25 | .02199 | .02720 | .02325 | 00436 | 00489 | 05470 | | 26 | .01639 | .01073 | .02724 | .00027 | .00108 | 02226 | | 27 | .01053 | 00736 | .03514 | 00108 | .00147 | •01355 | | 20 | · CC 68 5 | 02681 | .04720 | 00317 | .00147 | .05120 | | 29 | •41556 | .27437 | 26486 | •53978 | •2791 7 | 96228 | | 30 | .11535 | .29761 | 28969 | .14362 | .06156 | 75012 | | 31 | .11296 | .21277 | 20050 | •07611 | .03183 | 50191 | | 32 | .C8307 | .18413 | 17044 | .03155 | .00404 | 41869 | | 33 | •0e381 | .16865 | 15439 | .06526 | 61364 | 37005 | | 34 | .04301 | .15224 | 13791 | 02145 | 03299 | 33292 | | 35 | .01685 | .14059 | 12728 | 04939 | 05437 | 30335 | | 36 | CCB 19 | .12950 | 11841 | 07768 | 07684 | 27716 | | 37 | 04043 | .11209 | 10469 | 10830 | 10190 | 23845 | | 38 | 06158 | -08758 | 08530 | 12909 | 12087 | 18516 | | 39 | 07387 | .05899 | 06298 | 14173 | 13413 | 12405 | | 40 | 07500 | .02755 | 03877 | 14477 | 14000 | 05769 | | 41 | 07244 | 00078 | 01701 | 14191 | 14039 | .00093 | | 42 | 06923 | 03120 | .00671 | 13836 | 14039 | •06172 | | 43 | .53529 | 45906 | • 51 465 | 06650 | 40024 | •46325 | | 44 | .25682 | 1957A | .23633 | 14251 | 19850 | .30396 | | 45 | .16258 | 12219 | .15936 | 14159 | 16979 | .20690 | |------|-----------|-------------|------------|-----------------------|---------------------------|----------| | 46 | . 11519 | 07096 | .10633 | 12968 | 14272 | .12795 | | 47 | .09268 | 04233 | .07696 | 11841 | 12518 | .07981 | | 48 | •07792 | 01792 | .05192 | 10355 | 10630 | 03657 | | 49 | .05996 | .00615 | .02696 | 08461 | 08509 | 00837 | | 50 | . 04839 | .02068 | .01102 | 06252 | 66267 | 03687 | | 51 | .03926 | .02480 | .00467 | 03684 | 03750 | 04615 | | 52 | .03106 | .01946 | .00694 | 01766 | 01834 | 03698 | | 53 | .02383 | .00820 | .01445 | 00514 | 00489 | 01593 | | 54 | .01713 | -,00672 | .02509 | 00085 | .00107 | .01287 | | 55 | .01050 | 02219 | .03652 | 00223 | .00147 | .04292 | | 56 | .00662 | 03976 | .04998 | 00426 | .03147 | .07634 | | 57 | .41944 | .29066 | 29098 | .55706 | .27917 | -1.02544 | | 58 | .11652 | .30853 | 31093 | .14807 | .0 £1 56 | 76694 | | 59 | .11408 | .21884 | 21719 | .07858 | .03163 | 52225 | | £0 | •0£391 | .18714 | 18 47 7 | .03294 | .00404 | 43042 | | 61 | . CE 448 | .16948 | 16715 | .00611 | C1384 | 38179 | | 62 | .04347 | .15049 | 14876 | 02105 | 03299 | 33211 | | £3 | .01912 | .13615 | 13582 | C4927 | 05437 | 29594 | | 64 | 00802 | .12307 | 12464 | 07763 | 67684 | 26485 | | 65 | 04022 | .10433 | 10867 | 10784 | 10190 | 22281 | | 66 | 0£126 | .07913 | 08726 | 12874 | 12087 | 16777 | | 67 | 07343 | .05041 | 06329 | 14119 | 13413 | 10633 | | 68 | 07528 | .01927 | 03786 | 14413 | 14000 | 04076 | | 69 | 07187 | 00858 | 01550 | 14127 | 14039 | .01658 | | 70 | 06864 | 03826 | • DO 62 5 | 13777 | 14039 | . 67555 | | 71 | .56098 | 47737 | • 52 5 4 9 | 05479 | 40024 | .47180 | | 72 | .26856 | 20685 | .23919 | 14063 | 19850 | .32143 | | 73 | .16958 | 12977 | .15799 | 14097 | 16979 | .22116 | | 74 | .11956 | 07698 | •10264 | 12953 | 14272 | •14015 | | 75 | .09570 | 04780 | .07214 | 11841 | 12518 | •09111 | | 76 | • C6 00 O | 02330 | .04650 | 10359 | 10630 | .04771 | | 77 | .06085 | •00048 | .02176 | 08464 | 06509 | .00321 | | 78 | .04850 | .01472 | .00677 | 06256 | · - •0626 7 | 02476 | | 79 | .03879 | •01678 | .00165 | 6369 7 | 03751 | 03393 | | ΕO | .03016 | .01358 | .00518 | 01789 | 01834 | 02507 | | 81 | • C2 2 68 | • 0 0 2 4 9 | .01383 | 00548 | 00490 | 00442 | | 82 | .01598 | 01245 | .02549 | 00128 | .00107 | .02427 | | 83 | . CC961 | 02811 | .03766 | 00272 | .00147 | .05452 | | 84 | .00620 | 04602 | .05170 | 00481 | .00147 | .08837 | | 85 | .41971 | .29502 | 30068 | .56281 | .27917 | -1.04497 | | 86 | . 11659 | .30989 | 31754 | .14919 | . C6156 | 79396 | | 87 | •11412 | .21802 | 22144 | •07896 | .03183 | 52221 | | 88 | .08392 | ·1 64 70 | 18725 | .03296 | .00404 | 42596 | | 89 | .06446 | .16582 | 16820 | .00597 | 01384 | 37415 | | 90 . | .04345 | •14524 | 14792 | 021 28 | 03 299 | 32054 | | 91 | .01913 | .12892 | 13263 | 04945 | 05437 | 27964 | | 92 | 00791 | .11398 | 11939 | 07757 | 07684 | 24427 | | 0.3 | 01080 | . VO 3V 1 | 10185 | - 10734 | 10190 | 19A79 | | 94 | 06072 | .06726 | 07963 | 12782 | 12087 | 14173 | |------|------------|---------------|---------|-----------|----------|---------------------| | 95 | 07274 | .03814 | 05570 | 14000 | 13413 | 06013 | | 96 | 07455 | .00761 | 03118 | 14292 | 14000 | 01668 | | 97 | 07119 | 01894 | 01007 | 14021 | 14039 | .03736 | | 98 | 06801 | 04660 | .01202 | 13696 | 14039 | .09176 | | 99 | • 57119 | 48625 | .53009 | 04939 | 40024 | 47627 | | 100 | -27270 | 21270 | . 24084 | 13961 | 19850 | .33049 | | 101 | .17161 | 13363 | .15787 | 14059 | 16979 | .22821 | | 102 | . 12 0 0 8 | 07948 | .10157 | 12943 | 14272 | •14510 | | 103 | . 09 52 4 | 04930 | .07657 | 11842 | 12518 | .09424 | | 104 | .07872 | 02357 | .04458 | 10366 | 10630 | .04842 | | 105 | .05 813 | .00158 | .01982 | 08470 | 06509 | .00109 | | 106 | .04455 | .01669 | .00521 | C6255 | 06267 | 02872 | | 107 | · C3389 | •02066 | 83000 | 03688 | 03751 | 03814 | | 108 | .02 481 | .01489 | .00472 | 01781 | 01 8 3 4 | 02771 | | 109 | .01746 | .00232 | .C1360 | 00548 | 00490 | 00408 | | 110 | . C1148 | 01460 | .02527 | 00142 | .00107 | .02855 | | 111 | .00648 | 03195 | .03743 | 00298 | .00146 | .06207 | | 112 | . CC408 | 05166 | .05203 | 00523 | .00146 | .09927 | | 113 | . 42 0 1 3 | .27734 | 27244 | .54410 | .27917 | 97614 | | 114 | 11693 | 29639 | 29 256 | .14383 | .06156 | 74881 | | 115 | . 11464 | .20676 | 19621 | .07502 | . C3183 | 48689 | | 116 | .06490 | .17131 | 15676 | .02949 | .00404 | 36645 | | 117 | .06607 | .14687 | 13246 | .00266 | 61385 | - .32268 | | 118 | .04568 | •11720 | 11104 | 02391 | 03299 | 25124 | | 119 | 02158 | •09337 | 10280 | 05066 | 05438 | 19746 | | 120 | 00560 | .07598 | 16623 | 07731 | 07684 | 1t023 | | 121 | 03799 | .05592 | 09354 | 10593 | 10190 | 11860 | | 122 | 05974 | •03190 | 08 072 | 12604 | 12687 | 06904 | | 123 | C7270 | .00739 | 06353 | 13841 | 13413 | 01366 | | 124 | 07512 | 01586 | 04237 | 14190 | 14000 | .02933 | | 125 | 07189 | 03510 | C2163 | 13973 | 14039 | .06871 | | 126 | C6866 | 05606 | .0003€ | 13696 | 14639 | .11013 | | 127 | .54C36 | 45802 | . 51068 | 06856 | 40024 | •46647 | | 129 | .25421 | 18676 | .22697 | 14504 | 19650 | .29281 | | 129 | . 15678 | 10741
 . 14883 | 14427 | 16979 . | .16285 | | 130 | .10394 | 04971 | .09689 | 13202 | 14272 | .08902 | | 131 | .07631 | 01787 | .07081 | 12017 | 12518 | .03274 | | 132 | .05714 | .00476 | .05118 | 10442 | 10630 | 00846 | | 133 | 03489 | .02216 | • C3131 | 08476 | 08509 | 04090 | | 134 | . C2304 | .02883 | .01834 | 06246 | 06267 | 05361 | | 135 | .01528 | .02571 | .01153 | 03697 | 03751 | 04809 | | 136 | •00921 | .01469 | . CC937 | 01801 | 01834 | 02736 | | 137 | · CC465 | 00041 | .00948 | 00544 | 60490 | .00145 | | 138 | .00158 | 01803 | .01186 | ~.00069 | •C01C6 | .03575 | | 1 39 | .CO016 | 03529 | .01 815 | 00210 | .00146 | .06956 | | 140 | .00001 | 05599 | .03086 | 00432 | .00146 | .10926 | | | | | | • • • • • | | | # NACA RM L51FG7 TRANSONIC WING-BODY DEFINITION NACA TRANSONIC WING-BUDY PANELING INTEGRATION OF THE PRESSURE DISTRIBUTION ON THE WING | | MACH= | .6000 ALP | HA- 4.0000 | | | | | | | | | |-------|-------------|------------|------------|----------------|----------------|--------|--------|----------|---------|-----------------|-------| | POINT | x | Y | Z | X/C | 27/8 | 2/0 | CP | CN | CA | CH | POINT | | 1 | 15.46024 | 2.58783 | .03361 | .01250 | .21565 | •00490 | 82204 | .28155 | 11048 | 1.27446 | 1 | | 2 | 15.63156 | 2.58783 | •07860 | . 03750 | . 21 565 | .01147 | 66020 | .22612 | 03003 | 98542 | Ž | | 3 | 15.88855 | 2.58783 | • 10749 | •07500 | .21565 | .01569 | 44380 | .30400 | 03107 | 1.24656 | ž | | 4 | 16.23120 | 2.58783 | .13768 | .12500 | .21565 | .02309 | 37704 | .25827 | 01911 | •97075 | 4 | | 5 | 16.57386 | 2.56783 | •15995 | •17500 | .21565 | .02334 | 34492 | .23627 | 01323 | .80739 | 5 | | 6 | 17. C8 78 3 | 2.56783 | .16215 | .25000 | .21565 | .02658 | 31467 | .43109 | 01586 | 1.25253 | 6 | | 7 | 17.77314 | 2.58783 | .20004 | .35000 | .21565 | .02919 | 29301 | .40142 | CO618 | .89267 | 7 | | 8 | 18.45844 | 2.58783 | .20288 | .450CO | . 21565 | .02961 | 27511 | .37691 | .00268 | .58156 | 8 | | 9 | 19.14375 | 2.56783 | .18938 | •5500 0 | . 21565 | .02764 | 24706 | .33848 | .01693 | .29189 | 9 | | 10 | 19.82905 | 2.58783 | .16067 | .65000 | .21565 | .02345 | 20684 | .28337 | .01459 | . 05079 | 10 | | 11 | 20.51436 | 2.58783 | .12075 | .75000 | .21565 | .01762 | 15524 | .21268 | .01382 | 10772 | 11 | | 12 | 21.19966 | 2.58783 | .07415 | .85000 | .21565 | .01082 | 09132 | .12511 | .00888 | 14943 | 12 | | 13 | 21.71364 | 2.56763 | .03759 | •92500 | . 21565 | .00546 | 02906 | .01991 | .00142 | 03406 | 13 | | 14 | 22.05629 | 2.56783 | .01312 | .97500 | •2156 5 | .00191 | .03610 | 02473 | 60177 | .05083 | 14 | | 15 | 15.46024 | 2.58783 | 03361 | .01250 | •2156 5 | 00490 | .46891 | .16060 | .06302 | .72697 | 15 | | 16 | 15.63156 | 2.58783 | 07860 | .03750 | .21565 | 01147 | .30138 | .10322 | .01371 | . 44985 | 16 | | 17 | 15.88855 | 2.56763 | 10749 | .07500 | .21565 | 01569 | .21451 | .14694 | .01502 | · EG251 | 17 | | 18 | 16.23120 | 2.56783 | 13768 | .12500 | ·21565 | 02009 | .14276 | .09779 | .00724 | .36756 | 18 | | 19 | 16.57386 | 2.58783 | 15995 | •17500 | . 21565 | 02334 | .09793 | .06709 | .00376 | .22922 | 19 | | 20 | 17.08783 | 2.58783 | 18215 | .25000 | . 21565 | 02658 | .05463 | .07484 | .00275 | .21745 | 20 | | 21 | 17.77314 | 2.58783 | 20004 | .350CO | .21565 | 02919 | .00088 | .00121 | .00002 | .00268 | 21 | | 22 | 10.45844 | 2.56783 | 20288 | .45000 | .21565 | 10150 | 04360 | -,05973 | .00042 | 09217 | 22 | | 23 | 19.14375 | 2.58783 | 18938 | •5500 0 | .21565 | 02764 | 06744 | 09239 | .00298 | 07967 | 23 | | 24 | 19.82905 | 2.5€783 | 16067 | •650C 0 | .21565 | 02345 | 07119 | 09754 | .00502 | 01748 | 24 | | 25 | 20.51436 | 2.58783 | -• 12 0 75 | .75000 | .21565 | 01762 | 65 476 | 07493 | .00487 | .03795 | 25 | | 26 | 21.19966 | 2.58783 | 07415 | · £5000 | .21565 | 01082 | 02226 | 03050 | .00217 | .03643 | 26 | | 27 | 21.71364 | 2.58783 | 03759 | •92500 | .21565 | 00548 | .01355 | .00928 | 00066 | 01588 | 27 | | 28 | 22,05629 | 2.58783 | 01312 | .97500 | .21565 | 00191 | •05120 | .03507 | 00250 | →. 07209 | 28 | | 29 | 17.78357 | 4 .7 60 95 | . 03092 | .01250 | .39841 | .00490 | 96228 | .36374 | 14273 | .80180 | 29 | | 30 | 17.94119 | 4.78095 | .07232 | .03750 | .39841 | .01147 | 75012 | .28354 | 03765 | .58104 | 30 | | 31 | 18.17762 | 4.78095 | .09889 | .07500 | .39841 | .01569 | 50191 | .37945 | -,03678 | .68766 | 31 | | 32 | 18.49286 | 4.78095 | .12666 | .12500 | .39641 | .02009 | 41689 | .31668 | 02343 | .47432 | 32 | | 33 | 18.00010 | 4 .7 80 95 | . 14715 | .17500 | .39841 | .02334 | 37605 | . 28 429 | 01592 | .33650 | 33 | | 34 | 10.28095 | 4 78005 | .14758 | -2 5000 | 14800 | ባንለኝያ | 33707 | _ 50378 | 01 R52 | .35885 | 24 | | 35 | 19.91143 | 4.78095 | -18404 | .350CO | -39841 | •02919 | 30335 | .45866 | 00706 | .03932 | 35 | |----|----------------------|--------------------|-------------------|------------------|------------------|----------------|------------------|------------------|--------|----------------|----------| | 36 | 20.54190 | 4.78095 | 18665 | •4 50 00 | 39841 | .02961 | 27716 | •41906 | •00298 | 22653 | 36 | | 37 | 21.17238 | • .7 :0 95 | • 17 42 3 | •55000 | .39841 | .02764 | 23845 | .36053 | .01165 | 42065 | 37 | | 38 | 21.00286 | 4 .7 80 95 | 14782 | ± 5000 | .39841 | .02345 | 18516 | .27995 | .01442 | 50260 | 38 | | 39 | 22.43333 | 4.78095 | .11109 | 75000 | 39841 | •01762 | 12 405 | .18757 | .01219 | 45507 | 39 | | 40 | 23.06381 | 4.78095 | .06822 | .85000 | .39841 | •01082 | 05769 | .06722 | .00619 | 26681 | 40 | | 41 | 23.53667 | 4.78095 | .03458 | 9 2500 | 39641 | .00548 | .00093 | 00070 | 00005 | .00249 | 41 | | 42 | 23.85190 | 4.7 60 95 | .01207 | .97500 | 39841 | .00191 | .06172 | 04666 | 00333 | .17970 | 42 | | 43 | 17.78357 | 4.78095 | 03092 | .01250 | .39841 | 00490 | .46325 | .17511 | .06871 | 38599 | 43 | | 44 | 17.94119 | 4 .7 80 95 | 07232 | .03750 | .39841 | 01147 | 30396 | .11490 | .01526 | . 23545 | 44 | | 45 | 18.17762 | 4.78095 | -, C9889 | .07500 | . 39841 | 01569 | .20690 | .15642 | .01599 | .28347 | 45 | | 46 | 18.49286 | 4.76095 | 12666 | .12500 | .39841 | 02069 | .12795 | .09673 | .00716 | .14488 | 46 | | 47 | 18.80810 | 4.78095 | 14715 | .17500 | .39841 | 02334 | .67981 | .06033 | .00338 | .07142 | 47 | | 48 | 19.28695 | 4.78095 | 16758 | ·250C0 | .39841 | 02658 | .03657 | .05530 | .00203 | .03942 | 48 | | 49 | 19.91143 | 4 .7 80 95 | 18404 | .35000 | .39841 | 02919 | 00837 | 01266 | 00019 | 00109 | 49 | | 50 | 20.54190 | 4.78095 | 18665 | • 4500 0 | .39841 | 02961 | 03687 | 05574 | .00040 | .03013 | 50 | | 51 | 21.17238 | 4.78095 | 17423 | •55000 | .39841 | 02764 | 04615 | 06978 | .00225 | .08141 | 51 | | 52 | 21.60286 | 4.78095 | 14782 | .65000 | .39841 | 02345 | 03698 | 05591 | .00288 | .10036 | 52 | | 53 | 22.43333 | 4.78095 | 11109 | •7500 0 | .39841 | 01762 | 01593 | 02409 | .00157 | .05644 | 53 | | 54 | 23.06381 | 4.78095 | 06822 | .8 5000 | .39841 | 01082 | .01287 | .01946 | 00138 | 05954 | 54 | | 55 | 23.53667 | 4.78095 | 03458 | .92500 | .39841 | 00548 | .04292 | .03245 | 00232 | 11467 | 55 | | 56 | 23.85190 | 4.7 80 95 | 01 207 | •97500 | .39841 | 00191 | • 07634 | .05771 | 60412 | 22225 | 56 | | 57 | 20.32395 | 7.17895 | •02798 | .01250 | .59825 | .00490 | -1.02544 | • 350 70 | 13761 | 11746 | 57 | | 56 | 20.46658 | 7.17895 | .06544 | .03750 | . 59825 | .01147 | 78694 | .26913 | 03574 | 12791 | 58 | | 59 | 2C.64053 | 7.17895 | • C 8 9 4 9 | .0750 | •59825 | .01569 | 52225 | • 35722 | 03651 | 24636 | 59 | | 60 | 20.96579 | 7.17895 | .11462 | •1 2500 | •59£2 5 | .02009 | 43042 | .29440 | 02179 | 28683 | 60 | | 61 | 21.25105 | 7.17895 | •13316 | •17500 | .59825 | .02334 | 38179 | •26115 | 01462 | 32865 | 61 | | 62 | 21.67895 | 7.17895 | 15165 | .250CO | •59825 | .02658 | 33211 | • 45432 | 01672 | 76532 | 62 | | 63 | 22.24947 | 7.17895 | . 16654 | .35000 | .59825 | .02919 | 29594 | .40484 | 00623 | 91172 | 63 | | 64 | 22.82000 | 7.17895 | .16690 | •45000 | .59825 | .02961 | 26485 | • 36 2 3 1 | .00257 | -1.02128 | 64 | | 65 | 23.39053 | 7.17895 | .15766 | .55000 | .59825 | .02764 | 22281 | .30480 | .00985 | -1.03188 | 65 | | 66 | 23.96105 | 7.17895 | .13376 | .65000 | .59625 | .02345 | 16777 | .22951 | .01182 | 90752 | 66 | | 67 | 24.53158 | 7.17895 | .10053 | .75000 | • 59825 | .01762 | 10633 | •14545 | .00945 | 65818 | 67 | | 69 | 25.10211
25.53000 | 7.17895
7.17895 | .06173 | .85000 | •59E25 | •01082 | 04076 | • 05 577 | .00396 | 28426 | 68 | | 70 | 25.81526 | | .C3129 | .92500 | .59825 | .00549 | .01658 | 01134 | 00081 | •06269 | 69 | | 71 | 20.32395 | 7.17895
7.17895 | •01093
••02798 | .97500
.01250 | .59f25 | .00192 | .07555 | 05168 | 00369 | .30046 | 70 | | 72 | 20.46658 | 7.17895 | 06544 | •03750 | •59825
•59825 | 00490
01147 | .47180 | .16136 | .06332 | 05404 | 71 | | 73 | 20.468053 | 7.17895 | 08949 | •03750
•07500 | •59825 | 01147 | .32143 | •10993 | .01460 | 05225 | 72 | | 74 | 20.96579 | 7.17895 | 11462 | •12500 | •59825 | 02009 | .22116
.14015 | .15128
.09586 | .01546 | 10433
09339 | 73 | | 75 | 21.25105 | 7.17895 | 13316 | .17500 | .59625 | 02009 | | | .00769 | | 74 | | 76 | 21.67 695 | 7.17895 | 15165 | •25000 | •59E25 | | •09111
•04771 | •06232 | •00349 | 07843 | 75 | | 77 | 22.24947 | 7.17895 | 16654 | .35000 | •59625 | 02658
02919 | .00321 | •06526 | •00240 | 10993 | 76 | | 78 | 22.82000 | 7.17895 | 16890 | •45000 | •59825 | | | .00439 | .00007 | 00988 | 77 | | 79 | 23.39053 | 7.17895 | 15766 | •550C0 | •59825 | 02961 | 02476 | 03388 | .00024 | •09549 | 78 | | 60 | 23.96105 | 7.17895 | 13376 | .65000 | .59825 | 02764
02345 | 03393 | 04642 | .00150 | •15716 | 79 | | 81 | 24.53158 | 7.17895 | 10053 | .75000 | .59825 | 02345 | 02507 | 03429 | .00177 | .13560 | 80
81 | | 82 | 25.10211 | 7.17895 | C6173 | .85000 | •59825 | | 00442 | 00605 | .00039 | .62737 | | | 83 | 25.53000 | 7 17895 | 03129 | •92500 | .59825
.59825 | 01082 | .02427 | .03320 | 00236 | 16926 | 82 | | | - 7.7
100U | 1 -1 / 843 | 04174 | •45200 | . 748/7 | 00549 | .05452 | .03729 | 00266 | 20613 | 83 | | 85 22.6532 9.77447 .02505 .02750 .77804 .00491 -1.0497 .31976 -1.2547 -9.0868 85 85 22.99147 9.77647 .05005 .77804 .01159 .01559 -22221 .31900 -0.0226 -1.0197 87 87 23.13294 9.77647 .05005 .77804 .01559 -22221 .31900 -0.0226 -1.0197 87 88 23.13294 9.77647 .1059 .12500 .77804 .0250522221 .31900 -0.0226 -1.0197 87 89 23.13294 9.77647 .1059 .12500 .77804 .025052221 .31900 -0.0226 -1.0197 87 90 24.07647 9.57647 .1059 .12500 .77804 .025052221 .3190002266 -1.0197 87 91 24.1700 9.57647 .1094 .35000 .77804 .02558 .32004 .3023401444 -1.60132 99 92 25.09765 9.57647 .11910 .55000 .77804 .0221627864 .3422801444 -1.60132 99 93 25.06024 9.57647 .11910 .55000 .77804 .0270127864 .1073 .00766 -1.32345 93 94 22.11862 9.57647 .11910 .55000 .77804 .02704 .19879 .02212 -1.52380 92 95 26.02941 9.57647 .01910 .55000 .77804 .02745 -1.1473 .17347 .00833 -1.00038 94 95 26.02941 9.57647 .05997 .75000 .77804 .02145 -1.1473 .17347 .00833 -1.00038 94 96 27.14600 9.57647 .05925 .85000 .77804 .011620613 .09800 .0006804963 93 97 27.52244 9.57647 .05925 .85000 .77804 .00192 .02126 .02041 .0016514567 96 98 27.777224 9.57647 .00938 .77500 .77804 .00191 .001760561500061 .41367 98 98 27.77724 9.57647 .10501 .92200 .77804 .00191 .001760561500061 .41367 98 98 27.77724 9.57647 .00938 .77500 .77804 .00191 .001760561500061 .41367 98 98 27.77724 9.57647 .00938 .77500 .77804 .00191 .001760561500061 .41367 98 99 27.77724 9.57647 .10171 .50500 .77804 .00191 .001760561500061 .41367 98 90 27.77724 9.57647 .00938 .77500 .77804 .00191 .001760561500061 .41367 98 90 27.77724 9.57647 .00938 .77500 .77804 .00191 .001760561500061 .41367 98 90 27.77724 9.57647 .00938 .77500 .77804 .00191 .001760561500061 .41367 98 90 27.77724 9.57647 .00938 .77500 .77804 .00191 .001760561500061 .41367 98 90 27.77724 9.57647 .00938 .77500 .77804 .00191 .001760561500061 .41367 98 90 27.77724 9.57647 .00938 .77500 .77804 .00191 .001760561500061 .41367 98 90 27.77724 9.57647 .00938 .77500 . | 84 | 25.81526 | 7.17895 | 01093 | •975 CO | .59825 | 00192 | .08837 | .06045 | 00432 | 35146 | 84 | |--|-----|---------------|----------|--------|----------|--------|---------|----------|--------|----------------|---------|------| | 87 22,18294 9,57647 10228 12500 77804 101509 -25221 31040 -03226 -1.01927 87 1.88228 88 29 23.69353 9.57647 11517 17500 77804 0.0234 -37415 22808 -01228 -88728 88 29 23.69353 9.57647 151571 25000 77804 0.0234 -37415 22808 -01228 -88728 89 024.07447 9.57647 13571 25000 77804 0.0238 -37415 22808 -01228 -88728 89 024.07447 9.57647 13571 25000 77804 0.0238 -37415 22808 -01228 -88728 89 024.07447 9.57647 13571 25000 77804 0.0236 -23404 39234 -01444 -1.60132 99 01 24.57706 9.57647 15116 4.5000 77804 0.0240 -2245.0740 34228 -0.0527 -1.57603 91 22 25.60224 9.57647 15116 35000 77804 0.0240 -22450 34228 -0.0527 -1.57603 91 22 25.60224 9.57647 15171 6.5000 77804 0.0245 -1.19879 24331 0.07866 -1.32345 93 04 22.18822 9.57647 15171 6.5000 77804 0.0245 -1.19879 24331 0.07866 -1.32345 93 04 27.52244 9.57647 0.0897 7.75000 7.7804 0.0142 -0.0013 0.0008 0.0613 -0.04503 94 02.77640 0.057647 0.0522 85000 7.7804 0.0142 -0.0013 0.0008 0.0613 -0.04503 95 02.77624 0.05765 0.05764 0.00768 0.00 | 85 | 22.66382 | 9-57447 | .02504 | .01250 | .79804 | .00491 | -1.04497 | •31976 | 12547 | 91888 | 85 | | 88 23,43224 9,27647 110578 112500 778004 0,020094,22960,012298,6728 89 90 24,07647 9,57647 1,1371 .25000 .778004 0,025583,2054 3,372341,0144 -1,60132 90 91 24,5706 9,57647 1,1371 .25000 .778004 0,025583,2054 3,372340,0527 -1,5706 9,1022 -1, | | | | | | | | | | | | | | 9 21,69353 9,57647 13571 12570 178004 102356 -32050 37405 10232 -684728 89 0 24,07647 9,57647 13571 25000 178004 102256 -320504 30238 -0.0144 -1.6012 90 11 24,19706 9,57647 13571 45000 178004 102019 -227064 34228 -0.00527 -1.57663 91 22 25,00726 9,57647 15116 45000 178004 102019 -227064 34228 -0.00527 -1.57663 91 23 25,00726 9,57647 15116 55000 178004 102019 -227064 34228 -0.00527 -1.57663 91 24 21,1822 9,57647 114110 .55000 178004 102345 -1.4173 117347 100893 -1.0038 94 25 26,627941 9,57647 10997 175000 178004 101162 -1.6013 107806 -1.33345 93 26 27,14000 9,57647 105525 85000 178004 101162 -1.6081 008008 100633 -1.0038 94 27,57224 9,57647 102701 9,92500 178004 101162 -1.6081 008008 100633 -1.0038 94 27,57224 9,57647 102701 9,92500 178004 101162 -1.6081 002004 1.00165 -1.6567 96 27,57224 9,57647 -0.02504 101250 178004 100191 109176 -0.05615 -0.00101 .41764 98 27,57224 9,57647 -0.02504 101250 178004 -0.0191 109176 -0.05615 -0.00101 .41764 98 27,57224 9,57647 -0.02504 101250 178004 -0.0191 109176 -0.05615 -0.0010 .41764 98 27,5724 9,57647 -0.02504 101250 178004 -0.0191 109176 -0.05615 -0.0010 .41764 98 27,5724 9,57647 -0.02504 101250 178004 -0.0191 10117 1013 101343 -3.3332 100 101 23,18294 9,57647 -0.02508 1078004 -0.0191 10117 1013 101343 -3.3332 100 101 23,18294 9,57647 -1.0258 112500 178004 -0.0269 115510 10880 10057 -4.0559 101 102 21,07857 9,57647 -1.1017 178000 178004 -0.0269 115510 10880 10057 -0.0515 -0.0011 1012 1013 101343 -3.3332
100 103 22,07857 9,57647 -1.11017 178000 178004 -0.0269 10108 1010 | - | | | | | | | | | | | | | 90 24,07647 9,37647 13571 25000 77804 0,0258 -32056 387236 -0.0144 -1.60132 99 91 25,0765 9,57647 15116 .45000 .78004 0,02061 -2.4427 29399 0.00212 -1.5763 91 92 25,0765 9,57647 .115110 .55000 .78004 0.02661 -2.4427 29399 0.00212 -1.52380 92 93 25,0765 9,57647 .115110 .55000 .78004 0.02661 -2.4427 29399 0.00212 -1.52380 92 94 26,11882 9,57647 .11971 .65000 .78004 0.02365 -1.14173 17347 0.0893 -1.06038 94 95 26,0244 9,57647 0.05525 .85000 .78004 0.0152 -0.0013 0.08008 0.0023 -0.04703 95 96 27,14000 9,57647 0.05525 .85000 .78004 0.0152 -0.0163 0.08008 0.00234 -0.0165 94 97 27,32204 9,57647 0.05525 .85000 .78004 0.0152 -0.0163 0.08008 0.00234 -0.0165 1.17149 97 98 27,77724 9,57647 0.05525 0.0010 .78004 0.0152 -0.0165 0.0016 0.0165 -1.4567 96 99 22,6382 9,57647 0.02504 0.01250 .78004 0.0191 0.09176 -0.05615 -0.0010 1.43674 99 100 22,09147 9,57647 -0.05656 0.03750 .78004 -0.0147 33009 0.0133 0.0333 -3.4332 100 101 23,18294 9,57647 -1.0258 0.3750 .78004 -0.01659 0.03306 0.0023 0.0333 -3.4334 0.0361 0.0252 0.0001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 | €8 | | | | | | | | | 01929 | | | | 91 24,59706 9,57647 .14904 .35000 .79804 .0291927647 .39299 .0222 -1.57603 91 92 25,00725 9,57647 .11110 .55000 .79804 .0276419879 .24331 .00766 -1.3236 93 93 25,00224 9,57647 .11101 .55000 .79804 .0276419879 .24331 .00766 -1.3236 93 94 26,11822 9,57647 .01997 .70000 .79804 .0276414173 .17347 .00893 -1.00288 94 95 26,02941 9,57647 .00897 .70000 .79804 .0176206013 .09808 .0063604903 95 96 27,14000 .571647 .00592 .885000 .79804 .0176206013 .09808 .0063604903 95 97 27,52264 9,57647 .02761 .92500 .79804 .01982 .007660561500011 .47674 98 99 22,75224 9,57647 .02761 .92500 .79804 .00191 .094760561500011 .47674 98 99 22,263382 9,5764702504 .01250 .798040147 .19304 .01313 .01331332 100 101 23,18294 9,5764702504 .01250 .7780401147 .13049 .10113 .0134313122 100 101 23,18294 9,5764702509 .07500 .7780401147 .13049 .10113 .0134313122 100 101 23,18294 9,5764702509 .07500 .7780401147 .13049 .10113 .0134313122 100 101 23,18294 9,5764702509 .07500 .7780401569 .22221 .13967 .0141744509 101 102 23,4824 9,5764712558 .12500 .7780402509 .07808 .00880 .0065730599 102 103 23,46335 9,576471127 .12580 .7780402314 .09224 .00880 .0065730599 102 103 23,46335 9,576471127 .12500 .7780402314 .09224 .00880 .00657 .30599 102 103 23,46394 9,576471127 .12500 .7780402314 .09224 .00800 .00807 .0012321340 103 104 22,47647 9,576471127 .15500 .7780402314 .09224 .00800 .00228 .22140 104 105 24,58706 9,576471127 .15500 .7780402315 .00800 .0099 .00033 .00022 .00012 105 106 22,62941 9,576471127 .05000 .7780402315 .00402 .00599 .00013 .00022 .00012 105 108 26,1724 9,576471127 .05000 .7780402315 .00402 .00039 .00029 .00013 .0002 .00011 .1011 .1012 .1012 .00002 . | | | | | | | | | | | | | | 92 25.0765 | | | | | | | | | | | | | | 93 25.60224 9.57647 .11971 6.55000 .79804 .02764 -11973 .12174 .00893 -1.00288 94 26.1828 9.57647 .01997 .75000 .79804 .01762 -0.6613 .09808 .00638 -0.6983 -1.06038 94 26.62941 9.57647 .01997 .75000 .79804 .01762 -0.6618 .09808 .00638 -0.6993 97 27.52264 9.57647 .02591 .92500 .79804 .01962 -0.6168 .02041 .0015 -1.5507 96 27.52264 9.57647 .02501 .92500 .79804 .00196 .00336 -0.2286 -0.0153 .17194 97 27.52264 9.57647 .02501 .92500 .79804 .00191 .09176 -0.5615 -0.0010 .41674 98 99 22.65382 9.57647 -0.02504 .01250 .77804 .00191 .09176 -0.5615 -0.0010 .41674 98 99 22.65382 9.57647 -0.02504 .01250 .77804 -0.0191 .09176 -0.5615 -0.0010 .41674 98 99 22.65382 9.57647 -0.02504 .01250 .77804 -0.0191 .19304 .10113 .0133 -1.3132 100 101 23.18294 9.57647 -0.02509 .03750 .77804 -0.0147 1.3059 .10113 .0133 -1.3132 100 101 23.18294 9.57647 -0.02509 .03750 .77804 -0.01569 .22221 .13967 .01417 -445509 101 122.18293 9.57647 -1.0258 .12500 .77804 -0.02509 .12510 .00880 .00657 -3.0599 102 102 22.46325 9.57647 -1.1257 .12500 .77804 -0.0234 .0924 .05880 .00657 -3.0599 102 103 23.66325 9.57647 -1.1257 .12500 .77804 -0.0234 .0924 .05880 .00657 -3.0599 102 103 23.66325 9.57647 -1.1257 .12500 .77804 -0.0234 .0924 .05880 .00657 -3.0599 102 103 23.66325 9.57647 -1.1257 .12500 .77804 -0.0234 .0924 .05880 .00657 .30599 102 103 22.66785 9.57647 -1.12116 .55000 .77804 -0.0234 .0924 .05880 .00627 .00228 -22110 103 105 24.58706 9.57647 -1.12116 .55000 .77804 -0.0234 .00109 .00109 .00133 .00002 .00011 .00002 .000 | - | | | | | | | | | | | | | 94 26.11862 9.57647 .11971 .65000 .79804 .0234514173 .17347 .00893 -1.06038 94 95 26.62941 9.57647 .05255 .85000 .79804 .0176206013 .00808 .0063864593 95 96 27.14600 9.57647 .05255 .85000 .79804 .0196261668 .02041 .0115514567 96 727.52294 9.57647 .02861 .92500 .79804 .00194 .007760521500611 .43674 98 92 22.65382 9.5764702504 .01250 .79804 .00191 .007760561500611 .43674 98 92 22.65382 9.5764702504 .01250 .79804 .00191 .007760561500611 .43674 98 91 22.65382 9.5764702504 .01250 .7980400191 .47627 .14574 .0571914861 99 100 22.99147 9.5764702609 .03750 .7980401147 .33049 .1013 .0134332332 100 101 23.18294 9.5764702609 .03750 .7980401147 .33049 .1013 .0134332332 100 101 23.18294 9.576470258 .03750 .7980402608 .22821 .13967 .0142744569 101 .22 .43824 9.5764710258 .12500 .7980402608 .02608 .0055700531 .22821 .13967 .00127 .44569 .1012 .22.99147 9.5764713971 .17500 .7980402658 .04842 .05972 .00213 .22134 .0105 .24.58700 9.5764713971 .17500 .7980402658 .04842 .05972 .00213 .22134 .0105 .020775 9.5764713971 .15000 .7980402791 .00109 .00133 .0000200012 105 .0012 .0016 .001 | | | | | | | | | | | | | | 95 26.62941 9.57647 .08997 .73000 .73804 .0176208013 .09808 .0063864503 95 96 27.16000 9.57647 .05255 .85000 .73804 .019821668 .02041 .0014514567 97 97 27.57224 9.57647 .02978 .97504 .92500 .73804 .00149 .0373602286 .001613 .17194 97 98 27.777224 9.5764702504 .01250 .73804 .00141 .47627 .16574 .0571941860 99 100 22.99147 9.5764705856 .03730 .7380401147 .33049 .10113 .0134336332 100 101 23.18244 9.5764708009 .07500 .7380401147 .33049 .10113 .0134336332 100 102 23.43924 9.5764710258 .12500 .7380402209 .14510 .08880 .0055730579 102 103 23.67353 9.5764711917 .17500 .7380402209 .14510 .08880 .0055730579 102 105 24.57364 9.5764711917 .25500 .7380402268 .04642 .05926 .0021824187 104 105 24.57370 9.5764711917 .25500 .7380402268 .04642 .05926 .0021824187 104 105 24.57370 9.5764711917 .25500 .7380402268 .04642 .05926 .0021824187 104 105 24.57370 9.5764711917 .25500 .7380402268 .04642 .05926 .00218 .221340 103 106 25.09765 9.5764711911 .55500 .7380402268 .04642 .05926 .00218 .221340 103 106 25.09765 9.5764711911 .55500 .73804027640381404668 .0151 .26159 107 108 26.11822 9.576471911 .65500 .73804027640381404668 .0151 .26159 107 108 26.11822 9.5764701917 .65500 .73804021650277103392 .00175 .20735 108 109 26.62941 9.5764708997 .75500 .73804021650277103392 .00175 .20735 108 110 27.16000 9.5764702801 .95500 .73804021650277103392 .00175 .20735 108 110 27.16000 9.5764702801 .95500 .7380401852 .02855
.0349400468 .00151 .26159 101 111 27.57294 9.5764702801 .95500 .7380401852 .02855 .03494 .00468 .00151 .26159 101 112 27.77224 9.5764702801 .95500 .7380401869 .00509 .00099 .00002 .03306 109 110 27.16000 9.5764702801 .95500 .73804 .00149 .00049 .000032 .00009 .00019 .111 112 27.77224 9.5764702801 .95500 .94946 .00149 .00140 .00033 .00009 .00079 .111 112 27.77249 9.57647 .00009 .00009 .00000000000000000000000 | - | | | | | | | | | | | | | 96 27,14C00 9,57647 .05525 .85000 .78804 .01522C1668 .02041 .0014514567 96 97 27,77224 9,57647 .02701 .92500 .78604 .00549 .037360228600153 .17194 97 98 27,77724 9,57647 .0078 .97500 .78004 .00191 .0017605515 .00001 .43674 98 99 22,65382 9,57647 .005556 .03750 .78004 .00191 .0017605515 .00001 .43674 98 100 22,99147 9,57647 .005056 .03750 .78004 .01147 .33049 .10113 .01343 .36332 100 101 23,18294 9,57647 .005009 .07500 .78004 .01147 .33049 .10113 .01343 .36332 100 102 23,43824 9,57647 .10258 .12500 .78604 .02509 .14510 .08880 .00657 .30539 102 103 23,67353 9,57647 .11917 .17500 .78604 .02509 .16510 .08880 .00657 .30539 102 104 24,07647 9,57647 .11917 .17500 .78604 .02538 .0842 .05726 .0021824187 104 105 24,5870E 9,57647 .11910 .55000 .78604 .02519 .00109 .00133 .00002 .00113 106 25,07765 9,57647 .11911 .55000 .78604 .02519 .00109 .00133 .00002 .00112 107 25,60724 9,57647 .11911 .55000 .78604 .02519 .00109 .00133 .00002 .00112 108 26,11862 9,57647 .11911 .55000 .78604 .02516 .02711 .03392 .00115 .26159 107 109 26,62941 9,57647 .00997 .75000 .78604 .02764 .03814 .00668 .0011 .26159 107 109 26,62941 9,57647 .00997 .75000 .78604 .02764 .03814 .00608 .0011 .26159 107 110 27,10000 .97647 .05525 .85000 .78604 .00162 .02855 .03494 .00224 .03856 .03494 .00224 .05856 .03494 .00246 .26495 110 121 27,77824 9,57647 .00980 .97500 .78604 .00162 .00549 .00027 .03306 109 110 27,10000 .97647 .05525 .85000 .78604 .00162 .00549 .00027 .03306 .0091 .26159 .11 121 27,77824 9,57647 .00980 .97500 .78604 .00040 .00140 .00040 .00049 .00022 .03306 .00 110 27,10000 .97647 .00978 .97500 .78604 .00040 .00040 .00049 .00022 .03306 .00 111 27,52294 9,57647 .00801 .92500 .78604 .00040 .00040 .00040 .00049 .00021 .28559 .11 112 27,77824 9,57647 .00801 .92500 .78604 .00040 .00040 .00040 .00049 .00022 .03306 .00 110 27,10000 .97647 .00040 .00 | | | | | | | | | | | | | | 97 27.52294 9.57647 0.02601 9.2500 7.7604 0.00549 0.017306 -0.0286 -0.0163 1.7194 97 98 27.77224 9.57647 0.0278 9.75047 0.02804 0.0120 7.7804 0.0191 0.0176 -0.05015 -0.00401 4.3674 98 99 22.65382 9.57647 -0.05856 0.03750 7.7804 -0.0141 4.7627 1.4574 0.05119 -4.1860 99 100 22.99147 9.57647 -0.05856 0.03750 7.7804 -0.0147 33049 1.0113 0.1343 -36332 100 101 23.18294 9.57647 -1.0258 1.12500 7.7804 -0.0147 33049 1.0113 0.1343 -36332 100 102 23.45324 9.57647 -1.0258 1.12500 7.7804 -0.0209 1.1510 0.08880 0.0057 -3.0599 102 103 23.67353 9.77647 -1.1917 1.7500 7.7804 -0.0209 1.1510 0.08880 0.0057 -3.0599 102 104 24.07647 9.57647 -1.1917 1.7500 7.7804 -0.0258 0.0842 0.0576 0.0218 -2.4187 103 105 24.58706 9.57647 -1.19116 4.5000 7.7804 -0.02901 0.0103 0.0002 0.00012 105 106 25.09765 9.57647 -1.1911 4.5000 7.7804 -0.02901 -0.0272 -0.0310 0.0002 0.00012 105 107 25.66224 9.57647 -1.1917 0.55000 7.7804 -0.02901 -0.0272 -0.0310 0.0002 0.00012 105 108 26.11662 9.57647 -1.1917 0.55000 7.7804 -0.02345 -0.02717 0.03392 0.0175 0.0213 100 109 26.62941 9.57647 -0.08997 7.5000 7.7804 -0.0245 -0.0214 -0.0668 0.00151 2.26159 107 100 27.10000 9.57647 -0.08997 7.5000 7.7804 -0.01062 0.0815 0.00099 0.0003 0.0330 109 110 27.12000 9.57647 -0.08997 7.5000 7.7804 -0.01062 0.0855 0.0344 -0.00248 -0.0499 0.0002 0.03300 109 110 27.12000 9.57647 -0.08997 0.75000 7.7804 -0.01062 0.0855 0.03494 -0.00248 -0.0499 0.0002 0.03300 109 110 27.12000 9.57647 -0.08997 0.75000 0.78004 -0.01062 0.0855 0.03494 -0.00248 -0.0499 0.0002 0.03300 109 110 27.12000 9.57647 -0.08991 0.7500 0.78004 -0.01062 0.0855 0.03494 -0.00248 0.00151 0.00000 | - | | | | | | | | | | | | | 98 27.77224 9.57647 .00978 9.7500 .7904 .00191 .09176056150001 .43674 98 99 22.65382 9.5764702506 .01550 .7980400191 .47627 .16576 .0571941680 99 100 22.99147 9.5764708009 .07500 .7980401147 .33049 .10113 .01343 .36332 100 101 23.18294 9.5764710258 .12500 .7980401509 .22821 .13967 .01227 .445569 101 102 23.453824 9.5764711917 .17500 .7980402334 .00424 .05767 .00323 .21340 103 104 24.07647 9.5764713571 .25000 .7980402334 .00424 .05767 .00323 .21340 103 105 24.58706 9.5764713571 .25000 .7980402334 .00424 .05767 .00323 .21340 103 106 25.09765 9.5764715116 .45000 .7980402919 .00109 .00133 .0000200612 105 107 25.60724 9.5764715110 .55000 .79804027640381404668 .00151 .26159 107 108 26.1862 9.576471971 .65000 .79804027640381404668 .00151 .26159 107 108 26.1862 9.5764708997 .75500 .7780401722 .0040800499 .00032 .03306 109 110 27.14000 9.5764708997 .75500 .7780401722 .0040800499 .00032 .03306 109 110 27.14000 9.5764708997 .75500 .7780401722 .0040800499 .00032 .03306 109 110 27.14000 9.5764708997 .75500 .7780401722 .0040800499 .00032 .03306 109 110 27.14000 9.5764708997 .75500 .7780401722 .00408 .00499 .00032 .03306 109 110 27.14000 9.5764708997 .75500 .7780401722 .00408 .00499 .00032 .03306 109 110 27.14000 9.5764708997 .75500 .7780401722 .00408 .00499 .00032 .03306 109 110 27.14000 9.57647 .00898 .97500 .77804 .00147 .76881 .10446 .0089824935 110 111 27.57294 9.57647 .00898 .97500 .78804 .00899 .00802 .0089824935 110 112 27.77824 9.57647 .00898 .97500 .78804 .00899 .00802 .0089824935 110 112 27.77824 9.57647 .00898 .00898 .00898 .00808 .0089824935 110 112 27.77829 .00898 .00898 .00898 .00898 .00898 .0089824935 110 112 27.78899 11.39355 .00898 .00898 .00898 .00898 .0089824935 110 112 27.78899 11.39355 .00898 | - | | | | | | | | | | | | | 99 22.85382 9.57647 -02506 01250 .79804 -00101 .77627 .14574 005710 -41860 99 100 22.99147 9.57647 -05856 03750 .79804 -01147 .33049 .10113 .0134343332 100 101 23.18294 9.5764706009 .07500 .7980402009 .16510 .08880 .0055730599 102 102 23.43324 9.5764710258 .12500 .7980402009 .16510 .08880 .0055730599 102 103 23.69353 9.5764713471 .17500 .7980402009 .16510 .08880 .0055730599 102 104 24.07647 9.5764713571 .25000 .7980402688 .04842 .05926 .0021824187 104 105 24.58706 9.5764713910 .45000 .7980402688 .04842 .05926 .0021824187 104 105 24.58706 9.5764713910 .45000 .7980402780 .00103 .00000001013 .00000 .00103 .00000 .001010 .00103 .00000 .001010 .00103 .00000 .001010 .00103 .00000 .001010 .00103 .00000 .001010 .00103 .00000 .001010 .00103 .00000 .001010 .00103 .00000 .001010 .00100 .00103 .00000 .001010 .0010000 .00100 .00100 .00100 .00100 .001000 .00100 .00100 .001000 . | | | | | | | | | | | | | | 100 22,99147 9.57647 -0.05696 0.03750 .79804 -0.01569 .22821 .13967 .01627 -4.45569 101 102 23,43824 9.57647 -1.0258 .12500 .79804 -0.0569 .22821 .13967 .01627 -4.45569 102 103 23,45333 9.57647 -1.1917 .17500 .79804 -0.0209 .14510 .08880 .00657 -3.05399 102 103 23,45333 9.57647 -1.1917 .17500 .79804 -0.02588 .04642 .05966 .00218 -2.21340 103 105 10 | | | | | | | | | | | | - | | 101 23,18294 9.71647 08009 .07500
.79804 01569 .22821 .13967 .01427 44569 101 102 23,43824 9.57647 10258 .12500 .79804 02034 .09424 .05767 .00323 21340 103 104 24.07647 9.77647 13571 .25000 .79804 02638 .09424 .05767 .00323 21340 103 105 24.88705 9.57647 14904 .35000 .79804 02638 .04842 .05926 .00218 24187 104 105 25.60724 9.57647 14904 .35000 .79804 02919 .00109 .00109 .00103 .00002 00612 105 105 25.60724 9.57647 14110 .55000 .79804 02764 02814 04668 .00151 .26159 107 108 26.11862 9.57647 14110 .55000 .79804 02764 03814 0668 .00151 .26159 107 108 26.11862 9.57647 11971 .65000 .79804 02345 02771 03392 .00175 .20735 108 .00622 .00224 .00244 .00248 02345 02771 03392 .00175 .20735 108 .00622 .00224 .00244 .00248 02345 02771 03392 .00175 .20735 108 .00245 | | | | | | | | | | | | | | 102 23,43924 9,57647 -,10258 .12500 .79604 -,02009 .14510 .08880 .00657 -,30599 102 103 23,65353 9,57647 -,11917 .17500 .79804 -,02334 .09424 .05767 .00323 -,21340 103 104 24,07647 9,57647 -,13571 .25000 .79804 -,02658 .0842 .05926 .00218 -,24187 104 105 24,58706 9,57647 -,13571 .25000 .79804 -,02658 .0842 .05926 .00218 -,24187 104 105 24,58706 9,57647 -,13116 .45000 .79804 -,02704 -,02772 -,03516 .00022 -,00612 105 107 25,60724 9,57647 -,11971 .65000 .79804 -,02764 -,03814 -,04668 .00151 .26159 107 108 26,11862 9,57647 -,11971 .65000 .79804 -,02764 -,02771 -,00392 .00175 .20735 108 109 26,62941 9,57647 -,08997 .75000 .79804 -,01762 -,00408 -,00499 .00032 .03306 109 110 27,14000 9,57647 -,08997 .75000 .79804 -,01762 .00408 -,00499 .00032 .03306 109 111 27,52294 9,57647 -,02801 .925500 .79804 -,01062 .02855 .03494 -,00248 -,24935 110 112 27,77624 9,57647 -,00798 .97500 .79804 -,00162 .02855 .03494 -,00248 -,24935 111 122 27,77624 9,57647 -,00798 .97500 .79804 -,00162 .00805 .004034 -,47249 112 .113 .24,70508 11.39355 .02622 .01250 .4946 .00147 -,74881 .1046 -,01387 -,51312 114 .114 .24,90508 11.39355 .03750 .94946 .00147 -,74881 .1046 -,01387 -,51312 114 .115 .25,54468 11.39355 .03750 .94946 .00147 -,74881 .1046 -,01387 -,51312 .114 .115 .25,54468 .1139355 .12364 .25000 .94946 .0234 -,32268 .90903 -,00904 -,49972 .117 .25,54468 .1139355 .12364 .25000 .94946 .0234 -,32268 .90903 -,000504 -,49972 .117 .25,54468 .1139355 .12550 .94946 .02658 .25124 .11049 -,00516 -,22667 .118 .119 .26,6237 .1139355 .12660 .75000 .94946 .02658 .25124 .11049 -,00516 -,22667 .118 .12650 .12660 | | | | | | | | | | | | | | 103 23.60353 9.5764713917 .17500 .7980402334 .09424 .05726 .0022321346 103 104 24.07647 9.5764713571 .25000 .79804024919 .00109 .00133 .0000200612 105 105 24.58706 9.5764714904 .35000 .79804027919 .00109 .00133 .0000200612 105 106 25.00765 9.5764715116 .45000 .79804027919 .00109 .00133 .0000200612 105 107 25.60724 9.5764715116 .45000 .79804027640381404668 .00151 .26159 107 108 26.11862 9.5764714110 .55000 .79804027640381404668 .00151 .26159 107 108 26.11862 9.5764701971 .455000 .79804027640277103392 .00175 .20735 108 109 26.62941 9.5764705525 .85000 .79804017620040800499 .000032 .03306 109 110 27.14000 9.5764702801 .92500 .79804017620040800499 .000032 .03306 109 110 27.14000 9.5764702801 .92500 .7980400162 .02855 .034940024824935 110 112 27.577824 9.5764702801 .92500 .7980400162 .02855 .034940024824935 110 112 27.577824 9.5764702801 .92500 .7980403191 .06927 .037990027128569 111 112 27.577824 9.5764702801 .92500 .7980403191 .06927 .00075003447249 112 113 24.78879 11.39355 .02282 .01250 .54946 .0004997614 .136170534365332 113 114 24.78879 11.39355 .02282 .01250 .44946 .0014097614 .136170534365332 113 115 25.07952 11.39355 .07296 .07500 .94946 .01147774881 .104460138751312 114 115 25.07952 11.39355 .07296 .07500 .94946 .0116948689 .135840138809102 115 115 25.60355 11.39355 .1364 .25000 .94946 .0203432268 .090030050449972 117 118 25.80355 11.39355 .1364 .25000 .94946 .02065825124 .14019001626667 118 125.00355 11.39355 .0360 .94946 .020662662397 11.39355 .0360 .94946 .020662667910103 .000510001626667 118 122 27.75410 11.39355 .02066 .55000 .94946 .0206626607 .00033 .0010826653 122 27.75410 11.39355 .02060 .05033 .00009 .94946 .02064 .02064 .00618 .00164 .00063 .00016 .26667 118 122 27.75410 11.39355 .02551 .92500 .94946 .02664 .02664 .02667 .02033 .0010826653 122 27.75410 11.39355 .02551 .92500 .9 | | | | | | | | | | | | | | 104 | | | | | | | | | | | | | | 105 | | | | | | | | | | | | | | 106 25.0765 9.576471511e .45000 79804022610287203516 .CGC25 .17518 106 107 25.60724 9.5764714110 .55000 .79804027640381404668 .00151 .26159 107 108 26.11682 9.5774711971 .65000 .79804023450277103392 .00175 .20735 108 109 26.62941 9.5764708997 .75000 .79804017620040800499 .00032 .03306 109 110 27.14000 9.5764705525 .85000 .7980401082 .02855 .034940024824935 110 112 27.57224 9.5764702801 .92500 .7980400182 .02855 .034940024824935 110 112 27.77824 9.5764706978 .97500 .7980400149 .06207 .637990027128569 111 112 27.7879 11.39355 .02282 .01250 .54946 .0049097614 .136170534365332 113 114 24.70508 11.39355 .05335 .03750 .94946 .0114774881 .104460138751312 114 115 25.07952 11.39355 .07296 .07500 .94946 .0114774881 .104460138751312 114 115 25.57668 11.39355 .09345 .12500 .94946 .0156988689 .135840038869102 115 117 25.54688 11.39355 .10857 .17500 .94946 .0233432268 .090030059449972 117 118 25.89355 11.39355 .12364 .25300 .94946 .0233432268 .090030059449972 117 118 25.89355 11.39355 .13578 .35000 .94946 .0269119746 .116180017076084 119 120 26.82297 11.39355 .13578 .35000 .94946 .0291919746 .116180017076084 119 120 26.82297 11.39355 .13578 .35000 .94946 .0291919746 .11618 .00017076084 119 120 26.82571 11.39355 .10857 .17500 .94946 .0291019746 .11618 .00017076084 119 120 26.82597 11.39355 .0033 .85000 .94946 .0291618608 .01041 .0066361003 120 121 27.78479 11.39355 .05033 .85000 .94946 .0291618608 .01041 .00668021648209 121 123 28.21935 11.39355 .0081 .97500 .94946 .00191 .110130037300219 .28699 126 125 29.03339 11.39355 .00801 .97500 .94946 .00191 .110130007000191 .12018 .00191 .28699 126 127 24.78879 11.39355 .00801 .97500 .94946 .00191 .1101300507 .00259 .331220 127 128 24.90508 11.3935500891 .97500 .94946 .00191 .110130005100191 .120191 .28699 126 129 25.07952 11.3935500851 .97500 .94946 .00190 .10082 .00291 .00851 | | | | | | | | | | .00218 | -,24187 | 104 | | 107 25.60624 9.57647 14110 .55000 .79804 02764 03814 04668 .00151 .26159 107 108 26.11862 9.57647 01997 .75000 .79804 02771 03392 .00175 .20735 108 109 26.62941 9.57647 08997 .75000 .79804 0162 .02855 .03494 00248 24935 110 111 27.52294 9.57647 02801 .92500 .79804 00182 .08855 .03494 00248 24935 110 112 27.77824 9.57647 02801 .92500 .79804 00191 .0927 .06075 00434 47249 112 113 24.78879 11.39355 .06282 .01250 .64946 .00490 97614 .13017 05343 65332 113 114 24.90508 11.39355 .07296 .07500 .94946 .01569 46889 .13584 01387 57349 115 116 25.31210 11.39355< | | | | | | | | | | | | | | 108 26.11 E2 9.57 E4711971 | | | | | | | | | | | | | | 109 26.62941 9.5764708997 .75000 .79804017620040800499 .00032 .03306 109 110 27.14000 9.5764705525 .85000 .7980401062 .02855 .034940024824935 110 111 27.52294 9.5764702801 .92500 .7980400549 .06207 .037990027128569 111 112 27.77824 9.5764700978 .97500 .7980403191 .09927 .060750043447249 112 113 24.78879 11.39355 .02282 .01250 .94946 .0049097614 .136170534365332 113 114 24.90508 11.39355 .05335 .03750 .94946 .0114774881 .104460138751312 114 115 25.07952 11.39355 .07296 .07500 .94946 .0156948689 .135840138869102 115 116 25.31210 11.39355 .09345 .12500 .94946 .0209938645 .107820079857349 116 117 25.54468 11.39355 .10857 .17500 .94946 .0233432268 .090030050449972 117 118 25.89355 11.39355 .12364 .25500 .94946 .0223432268 .090030050449972 117 119 26.35471 11.39355 .13771 .45500 .94946 .0225825124 .140190051662687 118 119 26.35471 11.39355 .13771 .45500 .94946 .0291919746 .110180017070084 119 120 26.82297 11.39355 .13771 .45500 .94946 .0276411860 .06618 .0021446209 121 122 27.75419 11.39355 .08196 .75000 .94946 .0276411860 .06618 .0021446209 121 122 27.75419 11.39355 .08196 .75000 .94946 .0276411860 .06618 .0021446209 121 122 27.75419 11.39355 .08196 .75000 .94946 .0276411860 .06618 .0021446209 121 122 27.75419 11.39355 .08196 .75000 .94946 .0276411860 .06618 .0021446209 121 122 27.75419 11.39355 .08196 .75000 .94946 .0034500694 .03853 .0019826653 122 123 28.21935 11.39355 .00891 .97500 .94946 .00162 .0293301636 .00116 .46266 .06555 123 124 28.66452 11.39355 .00891 .97500 .94946 .00141 .10130037300116 .14206 124 125 29.03339 11.39355 .00891 .97500 .94946 .00147 .29281 .00465 .0054226065 128 129 25.07952 11.39355 .00891 .97500 .94946 .00147 .29281 .00465 .0054226065 128 129 25.07952 11.39355 .00893 .00555 .00890 .97500 .94946 .00147 .29281 .00465 .0054226065 128 129 25.07952 11.39355 .007266 .07500 .94946 .00147 .29281 .00465 .00548 .0052125951 | - | | | | | | | | | | | | | 110 27.14000 9.5764705525 .85000 .7980401062 .02855 .034940024824935 110 111 27.52294 9.5764702801 .92500 .7980400549 .06207 .037990027128569 111 112 27.77824 9.5764700798 .97500 .7980403191 .69927 .660750043447249 112 113 24.78879 11.39355 .02282 .01250 .54946 .0049097614 .136170534365332 113 114 24.90508 11.39355 .05335 .03750 .94946 .0114774881 .104460138751312 114 115 25.07952 11.39355 .07296 .07500 .94946 .0200986689 .135840138869102 115 116 25.31210 11.39355 .09345 .12500 .94946 .0200938645
.107820079857349 116 117 25.54668 11.39355 .10857 .17500 .94946 .0233432268 .090030050449972 117 118 25.89355 11.39355 .12364 .25500 .94946 .0265825124 .140190051662667 118 119 26.35471 11.39355 .13778 .35000 .94946 .0296719746 .110180017076084 119 120 26.82297 11.39355 .13771 .45500 .94946 .0296116023 .00941 .0006361003 120 121 27.28903 11.39355 .13771 .45500 .94946 .0296116023 .00941 .0006361003 120 122 27.75419 11.39355 .13771 .45500 .94946 .0296116023 .00941 .0006361003 120 122 27.75419 11.39355 .00891 .94946 .0276411860 .00618 .0021446209 121 122 27.75419 11.39355 .00891 .97500 .94946 .0276411860 .00618 .0021446209 121 122 27.75419 11.39355 .00891 .97500 .94946 .0176201866 .01041 .6066802655 123 124 28.61452 11.39355 .00891 .97500 .94946 .00764 .008210191700137 .17314 125 126 29.23597 11.39355 .00891 .97500 .94946 .00192 .029330163600116 .14206 124 125 29.03399 11.39355 .00891 .97500 .94946 .00194 .00650 .00542256951 129 128 24.90508 11.393550282 .01250 .94946 .00194 .00650 .00542256951 129 129 25.07952 11.3935507296 .07500 .94946 .00196 .00548 .00665 .00542259551 129 130 25.31210 11.3935507296 .07500 .94946 .00196 .00548 .00665 .00544 .00197 .00551256951 129 130 25.31210 11.3935500345 .12500 .94946 .00164 .00665 .00544 .00184 .00551256951 129 130 25.31210 11.3935500345 .12500 .94946 .00196 .00548 .00209 .00903 .00018 .00551256951 129 13 | | | | | | | | | | | | | | 111 27.52294 9.5764702801 .92500 .7980400540 .06207 .037990027128569 111 112 27.77824 9.5764700778 .97500 .7980403191 .09927 .060750043447249 112 113 24.78879 11.39355 .02282 .01250 .94946 .0049097614 .136170534365332 113 114 24.90508 11.39355 .05335 .03750 .94946 .0114774881 .104460138751312 114 115 25.07052 11.39355 .07296 .07500 .94946 .0156946889 .135840138869102 115 116 25.31210 11.39355 .09345 .12500 .94946 .0200938645 .107820077857349 116 117 25.54688 11.39355 .10857 .17500 .94946 .0233432268 .090030050449972 117 118 25.89355 11.39355 .12364 .25500 .94946 .0265825124 .140190051662667 118 119 26.35771 11.39355 .13578 .35000 .94946 .0296116023 .00941 .0006361003 120 120 26.82297 11.39355 .13578 .35000 .94946 .0296116023 .00941 .0006361003 120 121 27.28903 11.39355 .12855 .555000 .94946 .0276411860 .06618 .0021446209 121 122 27.75419 11.39355 .08196 .75000 .94946 .0276411860 .06618 .0021446209 121 122 27.75419 11.39355 .08196 .75000 .94946 .0234500904 .03853 .0019829653 122 123 28.21935 11.39355 .08196 .75000 .94946 .0276411860 .06618 .0021446209 121 124 28.66452 11.39355 .05033 .85000 .94946 .0276411860 .00618 .0021446209 121 125 29.23399 11.39355 .068196 .75000 .94946 .0034500904 .03853 .0019829653 122 124 28.66452 11.39355 .00891 .97500 .94946 .00548 .006710191700137 .17314 125 126 29.26597 11.39355 .00891 .97500 .94946 .00191 .1101300307300219 .28669 126 127 24.78879 11.3935502282 .01250 .94946 .00147 .29281 .04065 .0054226065 128 129 25.07952 11.3935500335 .03750 .9494600140 .00902 .02484 .0018432210 130 131 25.54468 11.3935500335 .12500 .9494600140 .00902 .02484 .0018432210 130 131 25.54468 11.3935500335 .03750 .9494600140 .00902 .00902 .02484 .0018432210 130 131 25.54468 11.3935500335 .03750 .9494600169 .00902 .02484 .0018432210 130 131 25.54468 11.3935500335 .12500 .9494600234 .003274 .00913 .00051005070 131 | 109 | | | | | | | | | | | 109 | | 112 27.77824 9.57647 00978 .97500 .79804 03191 .69927 .66075 00434 47249 112 113 24.78879 11.39355 .02282 .01250 .64946 .00490 97614 .13617 05343 65332 113 114 24.90508 11.39355 .05335 .03750 .94946 .00147 74681 .10446 01387 51312 114 115 25.07952 11.39355 .07296 .07500 .94946 .01669 48689 .13584 01388 69102 115 116 25.31210 11.39355 .09345 .12500 .94946 .02009 38645 .10782 00798 57349 116 117 25.54688 11.39355 .10857 .17500 .94946 .02334 32268 .09003 00504 49772 117 118 25.89355 11.39355 .12364 .25300 .94946 .02345 25124 .14019 00516 62667 118 119 26.85237 | 110 | • • • • • • • | | | | | | | | | | | | 113 24.78879 11.39355 .02282 .01250 .94946 .0049097614 .136170534365332 113 114 24.90508 11.39355 .05335 .03750 .94946 .0114774881 .104460138751312 114 115 25.07952 11.39355 .07296 .07500 .94946 .0156948689 .135840138869102 115 116 25.31210 11.39355 .09345 .12500 .94946 .0200938645 .107820079857349 116 117 25.54468 11.39355 .10857 .17500 .94946 .0233432268 .090030050449972 117 118 25.69355 11.39355 .12364 .25500 .94946 .0265825124 .140190051662667 118 119 26.35871 11.39355 .13578 .35500 .94946 .0265825124 .140190051662667 118 120 26.62297 11.39355 .13771 .45600 .94946 .0291919746 .110180017076084 119 121 27.28903 11.39355 .12855 .555000 .94946 .0276411860 .06618 .0021442209 121 122 27.75419 11.39355 .10896 .65000 .94946 .0276411860 .06618 .0021442209 121 122 27.75419 11.39355 .08196 .75000 .94946 .0276461866 .01041 .66668 .0021442209 121 122 27.35419 11.39355 .08196 .75000 .94946 .0176261866 .01041 .66668 .00548 .02552 123 124 28.68452 11.39355 .05033 .85000 .94946 .0176261866 .01041 .6666800552 123 124 28.68452 11.39355 .05033 .85000 .94946 .00198 .029330163600116 .14206 124 125 29.23399 11.39355 .00891 .97500 .94946 .00191 .110130007300119 .17314 125 126 29.26597 11.39355 .00891 .97500 .94946 .00191 .110130007300219 .28469 126 127 24.78879 11.3935502282 .01250 .9494600490 .46647 .06507 .0255331220 127 128 24.90508 11.3935505335 .03750 .9494600490 .46647 .06507 .0255331220 127 128 24.90508 11.3935505335 .03750 .9494600147 .29281 .04085 .0054226005 128 129 25.07952 11.3935507296 .07500 .9494600147 .29281 .04085 .0054226005 128 129 25.07952 11.3935507296 .07500 .9494600147 .29281 .04085 .0054226005 128 129 25.07952 11.3935505335 .03750 .9494600147 .29281 .04085 .0054225951 129 130 25.31210 11.2935507296 .07500 .9494600234 .00244 .00913 .0005105070 131 | | | | | | | | | | | | | | 114 24.90508 11.39355 .05335 .03750 .94946 .0114774881 .104460138751312 114 115 25.07952 11.39355 .07296 .07500 .94946 .0156948689 .135840138869102 115 116 25.31210 11.39355 .09345 .12500 .94946 .0209938645 .107820079857349 116 125.5468 11.39355 .10857 .17500 .94946 .0233432268 .090030050449972 117 118 25.89355 11.39355 .12364 .25000 .94946 .0265825124 .140190051662667 118 119 26.35f71 11.39355 .13578 .35000 .94946 .0291919746 .110180017076084 119 120 26.82297 11.39355 .13771 .45000 .94946 .0291919746 .110180017076084 119 121 27.28903 11.39355 .12855 .55000 .94946 .0276411860 .06618 .0021446209 121 122 27.75419 11.39355 .10806 .65000 .94946 .0276411860 .06618 .0021446209 121 123 28.21935 11.39355 .08196 .75000 .94946 .0234506904 .03853 .0019828653 122 124 28.68452 11.39355 .05033 .85000 .94946 .0176261866 .01041 .6066808552 123 124 28.68452 11.39355 .05033 .85000 .94946 .01082 .029330163600116 .14206 124 125 29.26597 11.39355 .02551 .92500 .94946 .00548 .066710191700137 .17314 125 127 24.78879 11.3935502282 .01250 .94946 .00191 .110136207300219 .28669 126 127 24.78879 11.3935505335 .03750 .94946 .00191 .110136207300219 .28699 126 127 25.07952 11.3935507296 .07500 .9494600169 .18285 .05101 .0055125951 129 130 25.31210 11.2935507296 .07500 .9494601659 .18285 .05101 .0055225951 129 130 25.312210 11.2935507345 .12500 .9494601659 .08902 .02484 .0018413220 137 131 25.54468 11.3935507296 .07500 .9494602334 .03274 .00913 .0005105507 .331 | | | | | | | | | | | | | | 115 | | | | | | | | | | | | | | 116 | | | | | | | | | | | | | | 117 25.54468 11.39355 .10857 .17500 .94946 .0233432268 .090030050449972 117 118 25.69355 11.39355 .12364 .25300 .94946 .0265825124 .14019001662667 118 119 26.35F71 11.39355 .13578 .35000 .94946 .0279119746 .110180017076084 119 120 26.62297 11.39355 .13771 .45600 .94946 .02919196023 .08941 .0006361003 120 121 27.28903 11.39355 .12855 .55000 .94946 .0276411860 .06618 .C021442209 121 122 27.75419 11.39355 .10906 .65000 .94946 .0276411860 .06618 .C021442209 121 123 28.21935 11.39355 .08196 .75000 .94946 .0176261866 .01041 .C666806551 123 124 28.68452 11.39355 .05033 .85000 .94946 .0176261866 .01041 .C666806552 123 125 29.23399 11.39355 .05033 .85000 .94946 .01082 .029330163600116 .14206 124 125 29.26597 11.39355 .00891 .97500 .94946 .00548 .068710191700137 .17314 125 126 29.26597 11.3935502282 .01250 .94946 .00191 .110130207300219 .28469 126 127 24.78879 11.3935505335 .03750 .9494600490 .46647 .06507 .0255331220 127 128 24.90508 11.3935505335 .03750 .9494600147 .29281 .04065 .0054226005 128 129 25.07952 11.3935507296 .07500 .9494601669 .18285 .05101 .0052125951 129 130 25.31210 11.2935509345 .12500 .9494602334 .03274 .00913 .0005105570 131 | | | • | | | | | | | | | | | 118 25.89355 11.39355 .12364 .25000 .94946 .0265825124 .140190051662667 118 119 26.35671 11.39355 .13578 .35000 .94946 .0291919746 .110180017076084 119 120 26.62397 11.39355 .13771 .45000 .94946 .0296116023 .08941 .0006361003 120 121 27.28903 11.39355 .10806 .65000 .94946 .0276411860 .06618 .0021446209 121 122 27.75419 11.39355 .10806 .65000 .94946 .0234506904 .03853 .0019829653 122 123 28.21935 11.39355 .08196 .75000 .94946 .0176261866 .01041 .6066806552 123 124 28.68452 11.39355 .05033 .85000 .94946 .0176261866 .01041 .6066806552 123 125 29.23339 11.39355 .02551 .92500 .94946 .00548 .066710191700137 .17314 125 126 29.26597 11.39355 .00891 .97500 .94946 .00191 .110136207300219 .28469 126 127 24.78879 11.393550282 .01250 .94946 .00191 .110136207300219 .28469 126 127 24.78879 11.3935505335 .03750 .9494600490 .46647 .06507 .0255331220 127 128 24.90508 11.3935505335 .03750 .9494600147 .29281 .04065 .0054226065 128 129 25.07952 11.3935507296 .07500 .9494601147 .29281 .04065 .0054226065 128 129 25.07952 11.3935507296 .07500 .9494601669 .18285 .05101 .0055125951 129 130 25.31210 11.2935509345 .12500 .9494602334 .03274 .00913 .0005105070 131 | | | | | | | | | | | | | | 119 26.35F71 11.39355 .13578 .35000 .94946 .0291919746 .110180017076084 119 120 26.8297 11.39355 .13771 .456000 .94946 .0296136023 .00941 .0006361003 120 121 27.28903 11.39355 .12855 .55000 .94946 .0276411860 .06618 .C021446209 121 122 27.75419 11.39355 .10506 .65000 .94946 .0234506904 .03853 .0019829653 122 123 28.21935 11.39355 .06196 .75000 .94946 .01762C1866 .01041 .CCC6808552 123
124 28.68452 11.39355 .05033 .85000 .94946 .01082 .029330163600116 .14206 124 125 29.2339 11.39355 .02551 .92500 .94946 .00540 .066710191700137 .17314 125 126 29.26597 11.39355 .00891 .97500 .94946 .00191 .110136207300219 .28669 126 127 24.78879 11.3935500891 .97500 .94946 .00191 .110136207300219 .28669 126 127 24.78879 11.3935500282 .01250 .9494600490 .46647 .06507 .0255331220 127 128 24.90508 11.3935505335 .03750 .9494600147 .29281 .04065 .0054226065 128 129 25.07952 11.3935507296 .07500 .9494601147 .29281 .04065 .0054226065 128 129 25.07952 11.3935507296 .07500 .9494601669 .18285 .05101 .0052125951 129 130 25.31210 11.2935509345 .12500 .9494602334 .03274 .00913 .0005105070 131 | | | | | | | | | | | | | | 120 | | | | | | | | | | | | | | 121 27.28903 11.39355 .12855 .55000 .94946 .02764 11860 .06618 .C0214 44209 121 122 27.75419 11.39355 .10906 .65000 .94946 .02345 06904 .03853 .00198 29653 122 123 28.21935 11.39355 .08196 .75000 .94946 .01762 61866 .01041 .06668 08552 123 124 28.66452 11.39355 .05033 .85000 .94946 .001082 .02933 01636 00116 .14206 124 125 29.23339 11.39355 .02551 .92500 .94946 .00192 .0117 00137 .17314 125 126 29.26597 11.39355 .00891 .97500 .94946 .00191 .11013 03073 00219 .28469 126 127 24.78879 11.39355 02282 .01250 .94946 00490 .46647 .06507 .02553 31220 127 128 24.90508 11.39355 | | | | | | | | | | | | | | 122 27.75419 11.39355 .10906 .65000 .94946 .02345 06904 .03853 .00198 29653 122 123 28.21935 11.39355 .08196 .75000 .94946 .01762 61866 .01041 .6C668 05552 123 124 28.66452 11.39355 .05033 .85000 .94946 .01082 .02933 01636 00116 .14206 124 125 29.23399 11.39355 .02551 .92500 .94946 .00548 .06671 01917 00137 .17314 125 126 29.26597 11.39355 .00891 .97500 .94946 .00191 .11013 02073 00219 .28669 126 127 24.78879 11.39355 02282 .01250 .94946 00191 .11013 02073 00219 .28669 126 128 24.09508 11.39355 05335 .03750 .94946 01147 .29281 .04055 .00542 20065 128 129 25.07952 <td></td> | | | | | | | | | | | | | | 123 28,21935 11,39355 .08196 .75000 .94946 .01762 01866 .01041 .0068 06552 123 124 28,66452 11,39355 .05033 .85000 .94946 .01082 .02933 01636 00116 .14206 124 125 29,26339 11,39355 .02551 .92500 .94946 .00540 .06671 01917 00137 .17314 125 126 29,26597 11,39355 .00891 .97500 .94946 .00191 .11013 02073 00219 .28669 126 127 24,78879 11,39355 02282 .01250 .94946 00191 .11013 02073 00219 .28669 126 128 24,078879 11,39355 05335 .03750 .94946 00147 .29281 .04065 .00542 26065 128 129 25,07952 11,39355 07296 .07500 .94946 01167 .29281 .04065 .00542 26065 128 129 25,07952 <td></td> | | | | | | | | | | | | | | 124 28.66452 11.39355 .05033 .85000 .94946 .01082 .029330163600116 .14206 124 125 29.63339 11.39355 .02551 .92500 .94946 .00548 .066710191700137 .17314 125 126 29.26597 11.39355 .00891 .97500 .94946 .00191 .110130007300219 .28469 126 127 24.78879 11.3935502282 .01250 .9494600490 .46647 .06507 .0255331220 127 128 24.90508 11.3935505335 .03750 .9494601147 .29281 .04065 .0054226065 128 129 25.07952 11.3935507296 .07500 .9494601569 .18285 .05101 .0005125951 129 130 25.31210 11.3935509345 .12500 .9494602009 .08902 .02484 .0018413210 130 131 25.54468 11.3935510857 .17560 .9494602334 .03274 .00913 .0005105570 131 | | | | | | | | | | | | | | 125 29.03339 11.39355 .02551 .92500 .94946 .00540 .06671 01917 00137 .17314 125 126 29.26597 11.39355 .00891 .97500 .94946 .00191 .11013 02073 00219 .28469 126 127 24.78879 11.39355 02282 .01250 .94946 00490 .46647 .06507 .02553 31220 127 128 24.90508 11.39355 05335 .03750 .94946 01147 .29281 .04065 .00542 26065 128 129 25.07952 11.39355 07296 .07500 .94946 01147 .29281 .04065 .00542 25951 129 130 25.31210 11.39355 07296 .07500 .94946 02009 .08902 .02484 .00184 13210 130 131 25.54468 11.39355 10857 .17500 .94946 02334 .03274 .00913 .00051 05070 131 | 123 | 28.21935 | | | | | | | | 8 6003. | 08552 | 123 | | 126 29.26597 11.39355 .00891 .97500 .94946 .00191 .110136207300219 .28469 126 127 24.78879 11.3935502282 .01250 .9494600490 .46647 .06507 .0255331220 127 128 24.90508 11.3935505335 .03750 .9494601147 .29281 .04065 .0054226065 128 129 25.07952 11.3935507296 .07500 .9494601569 .18285 .05101 .0052125951 129 130 25.31210 11.2935509345 .12500 .9494602009 .08902 .02484 .0018413210 130 131 25.54468 11.3935510857 .17500 .9494602334 .03274 .00913 .0005105070 131 | | | | | | | | | | | | | | 127 24.78879 11.3935502282 .01250 .9494600490 .46647 .06507 .0255331220 127 128 24.90508 11.3935505335 .03750 .9494601147 .29281 .04065 .0054226065 128 129 25.07952 11.3935507296 .07500 .9494601569 .18285 .05101 .0052125951 129 130 25.31210 11.2935509345 .12500 .9494602009 .08902 .02484 .0018413210 130 131 25.54468 11.3935510857 .17560 .9494602334 .03274 .00913 .0005105070 131 | | | | | | | | | | | | | | 128 24.90508 11.3935505335 .03750 .9494601147 .29281 .04065 .0054226065 128
129 25.07952 11.3935507296 .07500 .9494601569 .18285 .05101 .0052125951 129
130 25.31210 11.3935509345 .12500 .9494602009 .08902 .02484 .0018413210 130
131 25.54468 11.3935510857 .17560 .9494602334 .03274 .00913 .0005105070 131 | | | | | | | | | | | | | | 129 25.07952 11.3935507296 .07500 .9494601569 .18285 .05101 .0052125951 129
130 25.31210 11.3935509345 .12500 .9494602009 .08902 .02484 .0018413210 130
131 25.54468 11.3935510857 .17500 .9494602334 .03274 .00913 .0005105070 131 | | | | | | | | | | | | | | 130 25.31210 11.3935509345 .12500 .9494602009 .08902 .02484 .0018413210 130 131 25.54468 11.3935510857 .17500 .9494602334 .03274 .00913 .0005105070 131 | | | | | | | - | | | | | | | 131 25.54468 11.3935510857 .17500 .9494602334 .03274 .00913 .0005105070 131 | 133 35.60355 11 203651224 _25000 04044 - 0265800846004790001702764 132 | | | | | | | | | | | | | | | 122 | 25.60255 | 11 70286 | 17744 | ~2 50 NA | 04044 | - 02658 | 00844 | | 00017 | -02764 | 1 32 | | 133 | 26.35871 | 11.39355 | 13578 | .350CO | .94946 | 02919 | 04090 | 02282 | 00035 | -14516 | 133 | |-----|----------|----------|-------|--------|----------|-------|--------|--------|--------|--------|-----| | 134 | 26.62387 | 11.39355 | 13771 | .45000 | .94946 | 02961 | 05361 | 02992 | .00021 | .20411 | 134 | | 135 | 27.28903 | 11.39355 | 12855 | .55000 | •94946 | 02764 | 04809 | 02683 | .00087 | .19546 | 135 | | 136 | 27.75419 | 11.39355 | 10906 | .65000 | .94946 | 02345 | 02736 | 01527 | .00079 | .11831 | 136 | | 137 | 28.21935 | 11.39355 | 08196 | •75000 | .94946 | 01762 | .00145 | .00081 | 00005 | 00666 | 137 | | 138 | 28.68452 | 11.39355 | 05033 | .85000 | .94946 | 01082 | .03575 | .01995 | 00142 | 17319 | 138 | | 139 | 29.C3339 | 11.39355 | 02551 | •92500 | .94946 | 00548 | .06956 | .01941 | 00139 | 17528 | 139 | | 140 | 29.26597 | 11.39355 | C0891 | .97500 | • 94 946 | 00191 | .10926 | .03048 | 00218 | 28244 | 140 | ### TOTAL COFFFICIENTS ON THE WING | REFA= | 144.0000 | REF8. | 12.0000 | REFC= | 6.1250 | |----------|----------|-------|---------|-------|--------| | REFX= | 20.0000 | REFZ= | 0.0000 | | | | MACH= | .60000 | | | | | | AL PHA = | 4.00000 | | | | | | C N = | .23499 | | | | | | C A= | 00717 | | | | | | C M= | 03226 | | | | | | CL- | .23491 | | | | | | C D+ | .00923 | | | | | | XC P. | 3.40257 | | | | | #### TOTAL COEFFICIENTS ### ON THE COMPLETE CONFIGURATION | REFA- | 144.0000 | REF8- | 12.0000 | REFC= | 6.1250 | |---------|----------|-------|---------|-------|--------| | REFX= | 20.0000 | REFZ= | 0.0000 | | | | MACH- | .60000 | | | | | | ALPH A= | 4.00000 | | | | | | C N= | .25341 | | | | | | CA= | 00322 | | | | | | CM= | . C3165 | | | | | | CL. | .253C2 | | | | | | CD+ | .01447 | | | | | | XCP= | 3.14040 | | | | | #### SECTION COEFFICIENTS ON THE WING #### SECTION COEFFICIENTS ON THE WING DELY-2.0000 REFL-6.1250 XLE-15.3746 **MACH**= .60000 AL PHA = 4.00006 CN-.27E08 DELY 2.4000 REFL= 6.1250 XLE-22.8000 CA--.00420 CH-.12516 MACH= . £0000 CL-.27770 ALPHA= 4.00000 CD. .01521 . 28304 CN-XC P= 2.81523 CA--.01060 -.18627 CH-. 28 309 CL. .00917 CD-DELY-2.4000 REFL. 6.1250 XLE = 17.7048 XCP= 3.92343 MACH-.60C00 ALPHA-4.00000 CN-. 29257 DELY-1.2000 REFL. 6.1250 XLE-24.7306 -. 00849 CA-CH-.02831 MACH= .60000 Ct. . 29245 4.00000 ALPHA-.01194 CD+ CN . . 20153 XCP+ 3.16855 CA= -.01174 CH--.18241 . 20186 CL-.00235 CD= DELY-20.2526 2.4000 REFL-6.1250 XLE-XC P= 4.17041 MACH= .60000 ALPHA-4.00000 CN-. 29850 CA--. 00987 CH+ -.08511 CPSTAG - 1.09327 CPCRIT - -1.29434 CPVAC - -3.96825 CL-. 29846 CD= .01098 SOLVE, TIME -1217-65400 XCP= 3.55042 THE PLOT CONTROL CARD IMAGE IS, ### PLOT. VARIAN(XO=1., YO=1.) | FRAME | χO | YO | xn | YM | CAL. POS | |-------|---------------|--------------|---------------|----------------|----------| | 1 | 1.000000E+00 | 1.000000E+00 | 1.000000E+00 | 1.000000E+00 | 0. | | 2 | 1.000000E+00 | 1.000000E+00 | 1. CCOCOOE+00 | 1.000000000000 | 0. | | 3 | 1.000000E+0C | 1.000000E+00 | 1.000000E+00 | 1.000000E+00 | 0. | | 4 | 1. CCOCOOE+00 | 1.000000E+00 | 1.000000E+00 | 1.000000E+00 | 0. | | 5 | 1.000000E+00 | 1.000000E+00 | 1.00000CE+00 | 1.000000E+00 | 0. | | 6 | 1.000000E+00 | 1.000000E+00 | 1.C00C00E+00 | 1.CCCCCCE+00 | 0. | | 7 | 1.CCC000F+00 | 1.000000E+00 | 1.000000E+00 | 1.000600E+00 | 0. | | 8 | 1.0C0000E+00 | 1.G0000CE+00 | 1.000cccE+00 | 1.CCC000E+00 | 0. | | 9 | 1.000000F+00 | 1.00C0CCE+00 | 1.000000E+00 | 1.000000E+00 | 0. | | 10 | 1.CC0CG0E+00 | 1.000000E+00 | 1.000000E+00 | 1.000000000000 | 0. | | 11 | 1.000000E+00 | 1.0C000CE+00 | 1.0CC000E+00 | 1.0C0000E+00 | 0. | | 12 | 1.0C0000E+00 | 1.000000E+00 | 1.000000E+00 | 1.000000E+00 | · 0. | | 13 | 1.0C0000E+00 | 1.000000E+00 | 1.000000E+00 | 1.000060E+00 | 0. | Appendix C PLOTTING OUTPUT ## NACA RM L51F07 TRANSONIC WING-BODY DEFINITION NACA TRANSONIC MING-BODY PRNELING X Z C. C. C. C. C. B. C. 10.007 NACA TRANSONIC NING-BODY PANELING Y 0. G. G. C. C. G. G. 10.CRT 126 NACA RM LEIFOT TRANSONIC WING-BODY DEFINITION X Y GUT 30. 30. 30. C. C. C. C. C. 10.00T . MACA RM LEIFOT TRANSONIC WING-BOGY DEFINITION X Z OUT 30. 30. 30. 0. C. C. C. G. 10.CRT 8 LEGEND FUSELAGE PRESSURE PLOTS MRCH NO. =
.60000 ALPHA = 4.00000 LEGEND FUSELAGE PRESSURE PLOTS M9CH NO. = .50000 ALPHA = 4.00000 O X = 20.72176 C X = 22.21036 O X = 23.33402 A X = 26.47552 A X = 30.31382 D X = 34.46933 G X = 37.00000 LEGEND NING PRESSURE PLOTS UPPER SURFACE MACH NO. = .60000 ALPHA = 4.00000 O Y = 2.58783 □ Y = 4.78095 ◇ Y = 7.17895 △ Y = 9.57647 △ Y = 11.33355 LEGENO HING PRESSURE PLOTS LOHER SURFACE MACH NO. = .60000 ALPHA = 4.00000 O Y = 2.59783 □ Y = 4.78085 ◇ Y = 7.17995 △ Y = 9.57647 △ Y = 11.33355 7-0 | 1. Report No. | 2. Government Acces | sian Na | 1 2 2 2 | -inst Coul | | | | |--|--------------------------------|--------------------------------|------------------|-----------------------------------|--|--|--| | NASA CR-3228 | 2. Government Acces | sion ivo. | J. Heci | pient's Catalog No. | | | | | | RATION OF PLOTTING | CAPARTI | TTY 5. Rep | ort Date | | | | | INTO THE "UNIFIED SUBSONI | C SUPERSONIC AEROD | YNAMIC A | NALYSIS | May 1980 | | | | | PROGRAM," VERSION B | 0 001 2.1001120 1.=1100 | | | orming Organization Code | | | | | | | | | | | | | | 7. Author(s) | | | 8. Perf | orming Organization Report No. | | | | | Octavio A. Winter | | | | | | | | | | | | 10. Wor | k Unit No. | | | | | 9. Performing Organization Name and Add | | | 5 | 05-31-43-03 | | | | | Computer Sciences Corpora | tion | | 11. Con: | tract or Grant No. | | | | | Hampton, Virginia | | | l N | AS1-14900 | | | | | | 13. Typ | e of Report and Period Covered | | | | | | | 12 Sponsoring Agency Name and Address | | | | ontractor Report | | | | | National Aeronautics and | i Space Administra | tion | | 973 - 1980
Isoring Agency Code | | | | | Washington, DC 20546 | • | | 14. 3001 | isothig Agency Code | | | | | 15, Supplementary Notes | | | | | | | | | Langley Technical Monitor | . Chamles H Fox | ln. | | | | | | | = = | . Charles n. rox, | Ur. | | | | | | | Topical Report | | | | | | | | | 16. Abstract | | - C | | i- Analysis | | | | | The BOl version of t | the Unitied Subsoni | c Supers | onic Aerodynam | itions made | | | | | to the BOO version. Thes | e modifications ar | ad additi | ations and add | program input. | | | | | its computational options | . the code readabi | lity, an | d the overlay | structure. | | | | | | | | | | | | | | This report describe | s the revised inpu | it; the p | lotting overla | y programs, | | | | | which were also modified, | and their associa | ited subr | outines; the a | uxiliary files | | | | | used by the program, the
This information is prese | revised output dat | a, and t
moint of | a program ove | ray scructure. | | | | | Titts tittorinacton is prese | inted from the viev | rpo me o i | a programmer. | 7. Key Words (Suggested by Author(s)) 18. Distribution Statement | | | | | | | | | Computer program | | | | | | | | | | | Unc | lassified - Un | limited | | | | | | | | | | | | | | | | | Subj | ect Category 02 | | | | | 19 Security Classif Infability and all | 20. Security Classify Lafeth | | 21 No of Pass | 22. Price* | | | | | 19. Security Classif. (of this report) Unclassified | 20. Security Classif, (of this | page) | 21. No. of Pages | | | | | | linal saad da d | Unclassified | | 138 | \$7.25 | | | |